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TD(0) with linear function approximation

Linear approximation of the value function:

V ∗(x) ≃ ξ⊤φ(x), for some ξ ∈ Rp.

TD(0): sample a transition (xn, r(xn), x
′
n) and update:

ξn = ξn−1 + ρn
[
r(xn) + γVn−1(x

′
n)− Vn−1(xn)

]
φ(xn),

Converges under classical assumptions for stochastic approximation,
!△ to something different from V ∗ if

[Tsitsiklis and Van Roy, 1997], [Bhandari et al., 2018]

Can we fix this with a universal approximator?
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Non-parametric TD(0)

Sample a transition (xn, r(xn), x
′
n) and update:

Vn = Vn−1 + ρn
[
r(xn) + γVn−1(x

′
n)− Vn−1(xn)

]
K (xn, ·),

where K is the reproducing kernel of an RKHS H ⊂ L2.

▶ the iterates are in H (functional space)
▶ recovers linear approximation with K (x , y) = φ(x)⊤φ(y)

▶ universal kernel such that H = L2 (Sobolev kernel).
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Non-parametric TD(0)

Sample a transition (xn, r(xn), x
′
n) and update:

Vn = Vn−1 + ρn
[
r(xn) + γVn−1(x

′
n)− Vn−1(xn)

]
K (xn, ·),

where K is the reproducing kernel of an RKHS H ⊂ L2.

▶ the iterates are in H (functional space)
▶ recovers linear approximation with K (x , y) = φ(x)⊤φ(y)

▶ universal kernel such that H = L2 (Sobolev kernel).
→ convergence to V ∗ in L2-norm, even if V ∗ /∈ H.



Main convergence result

Theorem
Assume that for some θ ∈ (−1, 1]:

∥Σ−θ/2V ∗∥H < +∞ . (source condition)

Then with suitable regularization, step size and averaging scheme:

E
[
∥V n − V ∗∥2

L2

]
= O

(
(log n)2n−

1+θ
2+θ

)
.
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▶ θ = 0: V ∗ ∈ H recovers known 1/
√
n parametric rate.

▶ θ ∈ (0, 1]: stronger assumption, faster rate.
▶ θ = −1: V ∗ ∈ L2, only asymptotic convergence.
▶ θ ∈ (−1, 0): V ∗ /∈ H, weaker assumption, slower rate.



Main convergence result

Theorem
Assume that for some θ ∈ (−1, 1]:

∥Σ−θ/2V ∗∥H < +∞ . (source condition)

Then with suitable regularization, step size and averaging scheme:

E
[
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]
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(
(log n)2n−
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2+θ

)
.

Theorem proved in the i.i.d. sampling setting.

Extends to sampling from a Markov chain with exponential mixing,
with an additional boundedness assumption.



Numerical experiment
Sobolev kernel of regularity s on the 1d torus.
Source condition θ: decrease of Fourier coefficients of V ∗.
▶ Predicted slope: −0.43
▶ Observed slope: −0.58
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→ Influence of mixing in the constants.



See you at the poster session!


