A Non-asymptotic Analysis of Non-parametric Temporal-Difference Learning

E. Berthier, Z. Kobeissi and F. Bach

Inria & Ecole Normale Supérieure, PSL Research University, Institut Louis Bachelier, Paris, France

NeurIPS@Paris 2022

Linear approximation of the value function:

$$V^*(x) \simeq \xi^{\top} \varphi(x)$$
, for some $\xi \in \mathbb{R}^p$.

TD(0): sample a transition $(x_n, r(x_n), x'_n)$ and update:

$$\xi_n = \xi_{n-1} + \rho_n \left[r(x_n) + \gamma V_{n-1}(x'_n) - V_{n-1}(x_n) \right] \varphi(x_n),$$

Linear approximation of the value function:

$$V^*(x) \simeq \xi^{\top} \varphi(x)$$
, for some $\xi \in \mathbb{R}^p$.

TD(0): sample a transition $(x_n, r(x_n), x'_n)$ and update:

$$\xi_n = \xi_{n-1} + \rho_n \left[r(x_n) + \gamma V_{n-1}(x'_n) - V_{n-1}(x_n) \right] \varphi(x_n),$$

Converges under classical assumptions for stochastic approximation, \triangle to something different from V^* if $V^* \notin \text{span}(\varphi_1,...,\varphi_p)$. [Tsitsiklis and Van Roy, 1997], [Bhandari et al., 2018]

Linear approximation of the value function:

$$V^*(x) \simeq \xi^{\top} \varphi(x)$$
, for some $\xi \in \mathbb{R}^p$.

TD(0): sample a transition $(x_n, r(x_n), x'_n)$ and update:

$$\xi_n = \xi_{n-1} + \rho_n \left[r(x_n) + \gamma V_{n-1}(x'_n) - V_{n-1}(x_n) \right] \varphi(x_n),$$

Converges under classical assumptions for stochastic approximation, \triangle to something different from V^* if $V^* \notin \text{span}(\varphi_1,...,\varphi_p)$. [Tsitsiklis and Van Roy, 1997], [Bhandari et al., 2018]

Can we fix this with a universal approximator?

Linear approximation of the value function:

$$V^*(x) \simeq \xi^{\top} \varphi(x)$$
, for some $\xi \in \mathbb{R}^p$.

TD(0): sample a transition $(x_n, r(x_n), x'_n)$ and update:

$$\xi_n = \xi_{n-1} + \rho_n \left[r(x_n) + \gamma V_{n-1}(x'_n) - V_{n-1}(x_n) \right] \varphi(x_n),$$

Converges under classical assumptions for stochastic approximation, \triangle to something different from V^* if $V^* \notin \text{span}(\varphi_1,...,\varphi_p,...)$. [Tsitsiklis and Van Roy, 1997], [Bhandari et al., 2018]

Can we fix this with a universal approximator?

Sample a transition $(x_n, r(x_n), x'_n)$ and update:

$$V_n = V_{n-1} + \rho_n \left[r(x_n) + \gamma V_{n-1}(x'_n) - V_{n-1}(x_n) \right] K(x_n, \cdot),$$

where K is the reproducing kernel of an RKHS $\mathcal{H} \subset L^2$.

Sample a transition $(x_n, r(x_n), x'_n)$ and update:

$$V_n = V_{n-1} + \rho_n \left[r(x_n) + \gamma V_{n-1}(x'_n) - V_{n-1}(x_n) \right] K(x_n, \cdot),$$

where K is the reproducing kernel of an RKHS $\mathcal{H} \subset L^2$.

ightharpoonup the iterates are in ${\cal H}$ (functional space)

Sample a transition $(x_n, r(x_n), x'_n)$ and update:

$$V_n = V_{n-1} + \rho_n \left[r(x_n) + \gamma V_{n-1}(x'_n) - V_{n-1}(x_n) \right] K(x_n, \cdot),$$

where K is the reproducing kernel of an RKHS $\mathcal{H} \subset L^2$.

- ▶ the iterates are in H (functional space)
- recovers linear approximation with $K(x, y) = \varphi(x)^{T} \varphi(y)$

Sample a transition $(x_n, r(x_n), x'_n)$ and update:

$$V_n = V_{n-1} + \rho_n \left[r(x_n) + \gamma V_{n-1}(x'_n) - V_{n-1}(x_n) \right] K(x_n, \cdot),$$

where K is the reproducing kernel of an RKHS $\mathcal{H} \subset L^2$.

- the iterates are in H (functional space)
- recovers linear approximation with $K(x, y) = \varphi(x)^{\top} \varphi(y)$
- universal kernel such that $\overline{\mathcal{H}} = L^2$ (Sobolev kernel).
 - \rightarrow convergence to V^* in L^2 -norm, even if $V^* \notin \mathcal{H}$.

Main convergence result

Theorem

Assume that for some $\theta \in (-1, 1]$:

$$\|\Sigma^{-\theta/2}V^*\|_{\mathcal{H}} < +\infty$$
 . (source condition)

Then with suitable regularization, step size and averaging scheme:

$$\mathbb{E}\left[\|\overline{V}_n - V^*\|_{L^2}^2\right] = O\left((\log n)^2 n^{-\frac{1+\theta}{2+\theta}}\right).$$

Main convergence result

Theorem

Assume that for some $\theta \in (-1, 1]$:

$$\|\Sigma^{-\theta/2}V^*\|_{\mathcal{H}}<+\infty$$
 . (source condition)

Then with suitable regularization, step size and averaging scheme:

$$\mathbb{E}\left[\|\overline{V}_n - V^*\|_{L^2}^2\right] = O\left((\log n)^2 n^{-\frac{1+\theta}{2+\theta}}\right).$$

- $\theta = 0$: $V^* \in \mathcal{H}$ recovers known $1/\sqrt{n}$ parametric rate.
- $\theta \in (0,1]$: stronger assumption, faster rate.
- ▶ $\theta = -1$: $V^* \in L^2$, only asymptotic convergence.
- ▶ $\theta \in (-1,0)$: $V^* \notin \mathcal{H}$, weaker assumption, slower rate.

Main convergence result

Theorem

Assume that for some $\theta \in (-1, 1]$:

$$\|\Sigma^{-\theta/2}V^*\|_{\mathcal{H}}<+\infty\,. \tag{source condition}$$

Then with suitable regularization, step size and averaging scheme:

$$\mathbb{E}\left[\|\overline{V}_n - V^*\|_{L^2}^2\right] = O\left((\log n)^2 n^{-\frac{1+\theta}{2+\theta}}\right).$$

Theorem proved in the *i.i.d.* sampling setting.

Extends to sampling from a Markov chain with exponential mixing, with an additional boundedness assumption.

Numerical experiment

Sobolev kernel of regularity s on the 1d torus.

Source condition θ : decrease of Fourier coefficients of V^* .

- ▶ Predicted slope: −0.43
- ► Observed slope: -0.58

 \rightarrow Influence of mixing in the constants.

See you at the poster session!