Efficient Algorithms for Control and Reinforcement Learning

Eloïse Berthier

Supervised by Francis Bach

October 27, 2022
Prelude: A diversity of control problems
Contents

1 Introduction
 • Optimal Control
 • Reinforcement Learning
 • Research Questions & Contributions

2 Max-Plus Discretization of Deterministic MDPs

3 Infinite-Dimensional Sums-of-Squares for Optimal Control

4 Convergence of Non-parametric Temporal-Difference Learning

5 Conclusion & Perspectives
The optimal control problem

An optimization problem [Liberzon, 2011]:

$$\inf_{u(\cdot)} \int_0^T L(x(t), u(t)) \, dt + M(x(T))$$

s.t. \(\forall t \in [0, T], \quad \dot{x}(t) = f(x(t), u(t)) \)

\[x(0) = x_0. \]

Ingredients:
The optimal control problem

An optimization problem [Liberzon, 2011]:

\[
\inf_{u(\cdot)} \int_0^T L(x(t), u(t)) \, dt + M(x(T)) \\
\text{s.t. } \forall t \in [0, T], \quad \dot{x}(t) = f(x(t), u(t)) \\
x(0) = x_0.
\]

Ingredients:

- A controlled dynamics
The optimal control problem

An optimization problem [Liberzon, 2011]:

$$\inf_{u(\cdot)} \int_0^T \left[L(x(t), u(t)) \right] dt + M(x(T))$$

s.t. $\forall t \in [0, T], \dot{x}(t) = f(x(t), u(t))$

$x(0) = x_0.$

Ingredients:

- A controlled dynamics
- A running cost and a terminal cost
The optimal control problem

An optimization problem [Liberzon, 2011]:

\[
\inf_{u(\cdot)} \int_0^T L(x(t), u(t)) \, dt + M(x(T))
\]

s.t. \(\forall t \in [0, T], \ \dot{x}(t) = f(x(t), u(t)) \)
\(x(0) = x_0. \)

Ingredients:

- A controlled dynamics
- A running cost and a terminal cost
- An infinite-dimensional minimization problem
Optimality conditions

Parallel approaches to solve optimal control problems [Trélat, 2005]:

• Pontryagin’s Maximum Principle [Pontryagin et al., 1974]:
 generalization of the Karush–Kuhn–Tucker necessary conditions. →
 indirect shooting methods.

• Bellman’s Optimality Principle [Bellman, 1954]:
 “Whatever the first decisions, the remaining ones must be optimal with regard to the state resulting from the first decisions.” →
 dynamic programming.
Optimality conditions

Parallel approaches to solve optimal control problems [Trélat, 2005]:

- **Pontryagin’s Maximum Principle** [Pontryagin et al., 1974]: generalization of the Karush–Kuhn–Tucker necessary conditions. → indirect shooting methods.
Optimality conditions

Parallel approaches to solve optimal control problems [Trélat, 2005]:

- **Pontryagin’s Maximum Principle** [Pontryagin et al., 1974]:
 generalization of the Karush–Kuhn–Tucker necessary conditions.
 → indirect shooting methods.

- **Bellman’s Optimality Principle** [Bellman, 1954]:
 “Whatever the first decisions, the remaining ones must be optimal with regard to the state resulting from the first decisions.”
 → dynamic programming.
Optimality conditions: the value function

Key object: the **value function**

\[
V^*(t_0, x_0) = \inf_{u(\cdot)} \int_{t_0}^{T} L(x(t), u(t)) \, dt + M(x(T))
\]

s.t. \(\forall t \in [t_0, T], \quad \dot{x}(t) = f(x(t), u(t)) \)

\[
x(t_0) = x_0.
\]
Optimality conditions: the value function

Key object: the **value function**

\[V^*(t_0, x_0) = \inf_{u(\cdot)} \int_{t_0}^{T} L(x(t), u(t)) \, dt + M(x(T)) \]

s.t. \(\forall t \in [t_0, T], \ x(t) = f(x(t), u(t)) \)
\[x(t_0) = x_0. \]

The Hamilton-Jacobi-Bellman PDE [Crandall, Evan and Lions, 1984]:

\[\forall (t, x), \quad \frac{\partial V}{\partial t} (t, x) + \inf_{u \in U} \left\{ L(x, u) + \nabla V(t, x)^\top f(x, u) \right\} = 0 \]

\[\forall x, \quad V(T, x) = M(x). \]
The reinforcement learning problem

A stochastic optimization problem [Sutton and Barto, 2018]:

$$\max_{\pi:S \rightarrow A} \mathbb{E}_p \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, \pi(s_t)) \right]$$

s.t. \(\forall t \in \mathbb{N}, \quad s_{t+1} \sim p(s' | s = s_t, a = \pi(s_t)) \)

\(s_0 = s \).

Ingredients:
The reinforcement learning problem

A stochastic optimization problem [Sutton and Barto, 2018]:

\[
\max_{\pi:S \rightarrow A} \mathbb{E}_p \left[\sum_{t=0}^{+\infty} \gamma^t r(s_t, \pi(s_t)) \right]
\]

s.t. \(\forall t \in \mathbb{N}, \ s_{t+1} \sim p(s' | s = s_t, a = \pi(s_t)) \)

\(s_0 = s. \)

Ingredients:

- An **unknown** controlled stochastic dynamics
The reinforcement learning problem

A stochastic optimization problem [Sutton and Barto, 2018]:

\[
\max_{\pi : S \to A} \mathbb{E}_p \left[\sum_{t=0}^{+\infty} \gamma^t r(s_t, \pi(s_t)) \right]
\]

s.t. \(\forall t \in \mathbb{N}, \; s_{t+1} \sim p(s' \mid s = s_t, a = \pi(s_t)) \)

\(s_0 = s. \)

Ingredients:

- An **unknown** controlled stochastic dynamics
- An **unknown** discounted reward
The reinforcement learning problem

A stochastic optimization problem [Sutton and Barto, 2018]:

\[
\max_{\pi: S \rightarrow A} \mathbb{E}_p \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, \pi(s_t)) \right]
\]

s.t. \(\forall t \in \mathbb{N}, s_{t+1} \sim p(s' \mid s = s_t, a = \pi(s_t)) \)

\(s_0 = s \).

Ingredients:

- An unknown controlled stochastic dynamics
- An unknown discounted reward
- A maximization problem
Dynamic programming

Key object: the **value function**

\[V^*(s) = \max_{\pi} \mathbb{E}_p \left[\sum_{t=0}^{+\infty} \gamma^t r(s_t, \pi(s_t)) \mid s_0 = s \right]. \]
Dynamic programming

Key object: the value function

\[V^*(s) = \max_{\pi} \mathbb{E}_p \left[\sum_{t=0}^{+\infty} \gamma^t r(s_t, \pi(s_t)) \mid s_0 = s \right]. \]

\(V^* \) is the fixed point of the Bellman operator \(T \) defined by:

\[TV(s) = \max_{a \in A} \left\{ r(s, a) + \gamma \mathbb{E}_p(\cdot \mid s, a) V(s') \right\} \]
Dynamic programming

Key object: the **value function**

\[
V^*(s) = \max_{\pi} \mathbb{E}_p \left[\sum_{t=0}^{+\infty} \gamma^t r(s_t, \pi(s_t)) \middle| s_0 = s \right].
\]

\(V^*\) is the fixed point of the Bellman operator \(T\) defined by:

\[
TV(s) = \max_{a \in A} \left\{ r(s, a) + \gamma \mathbb{E}_p(\cdot|s, a) V(s') \right\}
\]

Algorithms:

- **Value Iteration**: \(V_k = T^k V_0\) converges to \(V^*\) if \(\gamma \in [0, 1)\).
- **Temporal-Difference Learning**: estimate the Bellman operator from observed transitions, for policy evaluation.
Contents

1 Introduction
 - Optimal Control
 - Reinforcement Learning
 - Research Questions & Contributions

2 Max-Plus Discretization of Deterministic MDPs

3 Infinite-Dimensional Sums-of-Squares for Optimal Control

4 Convergence of Non-parametric Temporal-Difference Learning

5 Conclusion & Perspectives
Requirements for modern applications

- The dynamical systems are nonlinear
 \[\Rightarrow\] linear control methods cannot be used directly.
Requirements for modern applications

• The dynamical systems are nonlinear
 ⇒ linear control methods cannot be used directly.

• The dimensions of the systems are (relatively) large
 ⇒ approximation is needed.
Requirements for modern applications

- The dynamical systems are nonlinear
 ⇒ linear control methods cannot be used directly.

- The dimensions of the systems are (relatively) large
 ⇒ approximation is needed.

- There are modeling uncertainties
 ⇒ estimation is needed.
Requirements for modern applications

- The dynamical systems are nonlinear
 ⇒ linear control methods cannot be used directly.

- The dimensions of the systems are (relatively) large
 ⇒ approximation is needed.

- There are modeling uncertainties
 ⇒ estimation is needed.

- Some computations are done in real-time, embedded systems
 ⇒ memory/time efficient algorithms are needed.
Research questions

Questions explored throughout this thesis:

1. How to exploit partial knowledge of the model? [estimation]

2. How to represent the value function? [approximation]
Q1: How to exploit partial knowledge of the model?

“The controller” “The reinforcement learner”
Q1: How to exploit partial knowledge of the model?

“The controller”

“The reinforcement learner”

known model
Q1: How to exploit partial knowledge of the model?

“The controller”

“The reinforcement learner”

known model

approximate model
Q1: How to exploit partial knowledge of the model?

“The controller”

“The reinforcement learner”

known model
approximate model
offline observations
Q1: How to exploit partial knowledge of the model?

“*The controller*”

“*The reinforcement learner*”

<table>
<thead>
<tr>
<th>known model</th>
<th>approximate model</th>
<th>offline observations</th>
<th>online observations</th>
</tr>
</thead>
</table>
Q1: How to exploit partial knowledge of the model?

“The controller”

“The reinforcement learner”

known model approximate model offline observations online observations partial observability
Q2: How to represent the value function?

- If S is a finite set: tabular storage of $V(s)$, $s \in \{1, ..., |S|\} \rightarrow$ does not fit in memory if $|S|$ is too large

- If S is a continuous set: parameterization V_θ, $\theta \in \mathbb{R}^p$ \rightarrow curse of dimensionality if dim(S) is large
Q2: How to represent the value function?

- If S is a finite set: tabular storage of $V(s), s \in \{1, \ldots, |S|\}$
 \rightarrow \text{does not fit in memory if } |S| \text{ is too large!}

- If S is a continuous set: parameterization $V_\theta, \theta \in \mathbb{R}^p$
 \rightarrow \text{curse of dimensionality if dim}(S) \text{ is large!}

Solution: exploit some regularity or structure on V.

Tools used in our work:
- Max-plus linear parameterization
- Non-parametric representations in an RKHS
Contributions

Contributions

Contributions

• E. B. and F. Bach, “Max-Plus Linear Approximations for Deterministic Continuous-State Markov Decision Processes,” in *IEEE Control Systems Letters*, July 2020. [model known] [V max-plus linear]

• E. B., J. Carpentier, A. Rudi and F. Bach, “Infinite-dimensional Sums-of-Squares for Optimal Control,” *Conference on Decision and Control (CDC)*, Dec. 2022. [batch of observations] [H ≥ 0 with an RKHS]

Contributions

Contents

1 Introduction

2 Max-Plus Discretization of Deterministic MDPs

3 Infinite-Dimensional Sums-of-Squares for Optimal Control

4 Convergence of Non-parametric Temporal-Difference Learning

5 Conclusion & Perspectives
State-discretization of an MDP

Consider a deterministic MDP defined by:

- a continuous state space $S \subset \mathbb{R}^d$,
- a discrete action space A,
- a bounded reward function $r : S \times A \rightarrow [-R, R]$,
- a dynamics $\varphi(\cdot) : S \times A \rightarrow S$.

We want to discretize it into a finite MDP, to run value iteration.
State-discretization of an MDP

Consider a deterministic MDP defined by:

- a continuous state space $S \subset \mathbb{R}^d$,
- a discrete action space \mathcal{A},
- a bounded reward function $r : S \times \mathcal{A} \rightarrow [-R, R]$,
- a dynamics $\varphi(\cdot) : S \times \mathcal{A} \rightarrow S$.

We want to discretize it into a finite MDP, to run value iteration.

Problem: A naive discretization requires a very tight state-discretization to capture the dynamics, whose size blows up with the dimension.

→ Can we build a better discretization?
Max-plus linear approximation

The **max-plus semiring** is defined as $(\mathbb{R} \cup \{-\infty\}, \oplus, \otimes)$, where \oplus represents the maximum operator, and \otimes represents the usual sum.

Let $W = (w_1, \ldots, w_k)$ be a dictionary of functions $w_i : S \to \mathbb{R}$.

For $\alpha \in \mathbb{R}^k$, we define the **max-plus linear combination** [Fleming and McEneaney, 2000]:

$$ V(s) = \bigoplus_{i=1}^{k} \alpha_i \otimes w_i(s) = \max_{1 \leq i \leq k} \alpha_i + w_i(s). $$
Dictionaries for discretization

Piecewise constant value functions are natural candidates for a discretization, suggesting the following dictionaries:

- **Indicator**: \(w(s) = \begin{cases} 0 & \text{if } s \in A \\ -\infty & \text{otherwise} \end{cases} \)
Dictionaries for discretization

Piecewise constant value functions are natural candidates for a discretization, suggesting the following dictionaries:

- **Indicator**: \(w(s) = \begin{cases} 0 & \text{if } s \in A \\ -\infty & \text{otherwise} \end{cases} \)

- **Soft indicator**: \(w(s) = -c \, \text{dist}(s, A)^2 \), with \(c \) large.
Max-plus projection

A function $V \in \mathbb{R}^S$ can be lower- (or upper-) projected onto W.
Max-plus projection

A function $V \in \mathbb{R}^S$ can be lower- (or upper-) projected onto W.

Proposition ([Berthier and Bach, 2020])

Let $(A_1, ..., A_k)$ a partition of S where each A_i is convex, compact and non-empty, and let $D = \max_{1 \leq i \leq k} \text{diam}(A_i)$.
Let $W = (w_1, ..., w_k)$ defined by:

$$w_i(s) = -c \text{ dist}(s, A_i)^2$$

If V has Lipschitz constant L and $c \geq \frac{L}{4D}$, then

$$\| V - P_W(V) \|_{\infty} \leq 2LD$$
Max-plus projection

A function $V \in \mathbb{R}^S$ can be lower- (or upper-) projected onto W.

Proposition ([Berthier and Bach, 2020])

Let $(A_1, ..., A_k)$ a partition of S where each A_i is convex, compact and non-empty, and let $D = \max_{1 \leq i \leq k} \text{diam}(A_i)$.

Let $W = (w_1, ..., w_k)$ defined by:

$$w_i(s) = -c \text{ dist}(s, A_i)^2$$

If V has Lipschitz constant L and $c \geq \frac{L}{4D}$, then

$$\| V - P_W(V) \|_{\infty} \leq 2LD \quad \leftarrow \text{ independent of } c$$
Max-plus projection

A function $V \in \mathbb{R}^S$ can be lower- (or upper-) projected onto W.

Can we compute $P_W(V^*)$ without knowing V^*?
Approximate value iteration

We follow the method of [Akian et al., 2008]. Using the max-plus linearity of the Bellman operator, it decouples into two steps:

1. k^2 precomputations of the form:

 $$K_{ij} = \sup_{s \in S, a \in A} w_i(s) + r(s, a) + \gamma w_j(\varphi_a(s)).$$

2. A reduced value iteration algorithm on a finite MDP with k states and k actions, which uses the K_{ij}.
Approximate value iteration

We follow the method of [Akian et al., 2008]. Using the max-plus linearity of the Bellman operator, it decouples into two steps:

1. k^2 precomputations of the form:

$$K_{ij} = \sup_{s \in S, a \in A} w_i(s) + r(s, a) + \gamma w_j(\varphi_a(s)).$$

2. A reduced value iteration algorithm on a finite MDP with k states and k actions, which uses the K_{ij}.
Approximate precomputations

\[K_{ij} = \max_{a \in \mathcal{A}} \sup_{s \in \mathcal{S}} w_i(s) + r(s, a) + \gamma w_j(\varphi_a(s)). \]
Approximate precomputations

\[K_{ij} = \max_{a \in A} \sup_{s \in S} w_i(s) + r(s, a) + \gamma w_j(\varphi_a(s)) \]

gradient ascent on \(s \) (\(\simeq \) concave) \(\rightarrow \hat{K}_{ij} \)
Approximate precomputations

\[K_{ij} = \max_{a \in \mathcal{A}} \sup_{s \in \mathcal{S}} w_i(s) + r(s, a) + \gamma w_j(\varphi_a(s)) \, . \]

gradient ascent on \(s \ (\simeq \text{concave}) \rightarrow \hat{K}_{ij} \)

Decomposition of errors:

Theorem ([Berthier and Bach, 2020])

Let \(V \) be the result of the reduced value iteration step. Then:

\[
\| V - V^* \|_\infty \leq \frac{1}{1 - \gamma} \left(\| P_W(V^*) - V^* \|_\infty + \| P_W(V^*) - V^* \|_\infty \right)
\]

\[+ \| \hat{K} - K \|_\infty \) \].
Experiment (Cartpole, $d = 4$)
Sample-based optimal control

We want to solve the optimal control problem:

\[V^*(t_0, x_0) = \inf_{u(\cdot)} \int_{t_0}^{T} L(t, x(t), u(t)) dt + M(x(T)) \]

\[\forall t \in [t_0, T], \quad \dot{x}(t) = f(t, x(t), u(t)), \quad x(0) = x_0. \]

without knowing \(f \) and \(L \).
Sample-based optimal control

We want to solve the optimal control problem:

\[
V^*(t_0, x_0) = \inf_{u(\cdot)} \int_{t_0}^{T} L(t, x(t), u(t))dt + M(x(T)) \\
\forall t \in [t_0, T], \quad \dot{x}(t) = f(t, x(t), u(t)), \quad x(0) = x_0.
\]

without knowing \(f\) and \(L\).

We only observe samples:

\[
f(t^{(i)}, x^{(i)}, u^{(i)}), \quad L(t^{(i)}, x^{(i)}, u^{(i)}),
\]

for \(i \in \{1, \ldots, n\} = I\).
Weak-formulation of optimal control

The optimal control problem:

$$V^*(t_0, x_0) = \inf_{u(\cdot)} \int_{t_0}^{T} L(t, x(t), u(t)) dt + M(x(T))$$

$$\forall t \in [t_0, T], \dot{x}(t) = f(t, x(t), u(t)), \quad x(0) = x_0.$$
Weak-formulation of optimal control

The optimal control problem:

\[
V^*(t_0, x_0) = \inf_{u(\cdot)} \int_{t_0}^{T} L(t, x(t), u(t)) dt + M(x(T))
\]

\[\forall t \in [t_0, T], \quad \dot{x}(t) = f(t, x(t), u(t)) \quad \text{and} \quad x(0) = x_0.
\]

is equivalent (under convexity assumptions) to finding a maximal subsolution of the HJB equation [Lasserre et al., 2010]:

\[
\sup_{V \in C^1([0, T] \times \mathcal{X})} V(0, x_0)
\]

\[\forall (t, x, u), \quad \frac{\partial V}{\partial t}(t, x) + L(t, x, u) + \nabla V(t, x) \top f(t, x, u) \geq 0
\]

\[\forall x, \quad V(T, x) \leq M(x).
\]
Weak-formulation of optimal control

The optimal control problem:

\[
V^*(t_0, x_0) = \inf_{u(\cdot)} \int_{t_0}^{T} L(t, x(t), u(t)) dt + M(x(T))
\]

\[\forall t \in [t_0, T], \dot{x}(t) = f(t, x(t), u(t)), \quad x(0) = x_0.\]

is equivalent (under convexity assumptions) to finding a maximal subsolution of the HJB equation [Lasserre et al., 2010]:

\[
\sup_{V \in C^1([0, T] \times \mathcal{X})} V(0, x_0)
\]

\[\forall(t, x, u), \frac{\partial V}{\partial t}(t, x) + L(t, x, u) + \nabla V(t, x)^\top f(t, x, u) \geq 0\]

\[\forall x, V(T, x) \leq M(x). \quad H(t, x, u) \geq 0\]
A simple baseline: linear programming

Using a linear parameterization of V, and simply subsampling inequalities leads to an LP:

$$\sup_{\theta \in \mathbb{R}^m} V_\theta(0, x_0)$$

$$\forall i \in I, \quad H_\theta(t^{(i)}, x^{(i)}, u^{(i)}) \geq 0.$$

This readily gives a first numerical method.
A simple baseline: linear programming

Using a linear parameterization of V, and simply subsampling inequalities leads to an LP:

$$\sup_{\theta \in \mathbb{R}^m} V_\theta(0, x_0)$$
$$\forall i \in I, \quad H_\theta(t^{(i)}, x^{(i)}, u^{(i)}) \geq 0.$$

This readily gives a first numerical method.

Can we do any better?
SoS representation of non-negative functions

\[
\sup_{\theta \in \mathbb{R}^m} V_\theta(0, x_0) \\
\forall (t, x, u), \quad H_\theta(t, x, u) \geq 0.
\]
SoS representation of non-negative functions

\[\sup_{\theta \in \mathbb{R}^m} V_\theta(0, x_0) \]
\[\forall (t, x, u), H_\theta(t, x, u) \geq 0. \]

If we represent some \(g_k \) of the form:

\[g_k(y) = \langle \alpha_k, \varphi(y) \rangle. \]

Then we can generate a non-negative function as a sum-of-squares:

\[g(y) = \sum_{k=1}^{m} g_k(y)^2 \]
SoS representation of non-negative functions

\[
\sup_{\theta \in \mathbb{R}^m} V_\theta(0, x_0)
\]
\[
\forall (t, x, u), \quad H_\theta(t, x, u) \geq 0.
\]

If we represent some \(g_k \) of the form:

\[
g_k(y) = \langle \alpha_k, \varphi(y) \rangle.
\]

Then we can generate a non-negative function as a sum-of-squares:

\[
g(y) = \sum_{k=1}^{m} g_k(y)^2 = \langle \varphi(y), A\varphi(y) \rangle.
\]

where \(A = \sum_{k=1}^{m} \alpha_k \otimes \alpha_k \succeq 0 \).
SoS representation of the Hamiltonian

Theorem ([Berthier, Carpentier, Rudi and Bach, 2022])

Assume that:
• \(f \) is control-affine: \(f(t, x, u) = g(t, x) + B(t, x)u \);
• \(L \) is strongly convex in \(u \);
• \(L, B \) and \(V^* \) are sufficiently smooth;

Then \(H^* \) is a SoS of \(p \) smooth functions \((w_j)_{1 \leq j \leq p} \in C^s(\Omega)\):

\[
\forall (t, x, u) \in \Omega, \quad H^*(t, x, u) = \sum_{j=1}^{p} w_j(t, x, u)^2.
\]
SoS representation of the Hamiltonian

Theorem ([Berthier, Carpentier, Rudi and Bach, 2022])

Assume that:
- f is control-affine: $f(t, x, u) = g(t, x) + B(t, x)u$;
- L is strongly convex in u;
- L, B and V^* are **sufficiently smooth**;

Then H^* is a SoS of p smooth functions $(w_j)_{1 \leq j \leq p} \in C^s(\Omega)$:

$$\forall (t, x, u) \in \Omega, \quad H^*(t, x, u) = \sum_{j=1}^{p} w_j(t, x, u)^2.$$

⚠️ In general V^* is not even C^1.
An algorithm for smooth optimal control

\[
\sup_{V \in C^1([0, T] \times \mathcal{X})} V(0, x_0)
\]

\[
\forall (t, x, u), \quad H(t, x, u) \geq 0
\]

\[
\forall x, \quad V(T, x) \leq M(x)
\]

Steps:

• linear parameterization of \(V\)
• SoS representation of the Hamiltonian
• subsampling equalities
• kernel trick

This is an SDP of size \(n \times n\).

Sample-based version of the method of [Lasserre et al., 2010].
An algorithm for smooth optimal control

\[
\sup_{\theta \in \mathbb{R}^m} V_\theta(0, x_0) \\
\forall (t, x, u), H_\theta(t, x, u) \geq 0
\]

Steps:
• linear parameterization of \(V \)
An algorithm for smooth optimal control

\[
\sup_{\theta \in \mathbb{R}^m, \ A \in \mathbb{S}_+(\mathcal{H})} V_{\theta}(0, x_0)
\]

\[
\forall (t, x, u), \ H_{\theta}(t, x, u) = \langle \varphi(t, x, u), A \varphi(t, x, u) \rangle
\]

Steps:
- linear parameterization of \(V \)
- SoS representation of the Hamiltonian

Sample-based version of the method of [Lasserre et al., 2010].
An algorithm for smooth optimal control

\[
\sup_{\theta \in \mathbb{R}^m, \ A \in S_+(\mathcal{H})} V_\theta(0, x_0) - \lambda \text{Tr}(A)
\]

\[
\forall i, \ H_\theta(t^{(i)}, x^{(i)}, u^{(i)}) = \langle \varphi(t^{(i)}, x^{(i)}, u^{(i)}), A\varphi(t^{(i)}, x^{(i)}, u^{(i)}) \rangle
\]

Steps:
- linear parameterization of \(V \)
- SoS representation of the Hamiltonian
- subsampling equalities
An algorithm for smooth optimal control

\[
\begin{align*}
\sup_{\theta \in \mathbb{R}^m, \ B \succeq 0} V_\theta(0, x_0) - \lambda \text{Tr}(B) \\
\forall i, \ H_\theta(t^{(i)}, x^{(i)}, u^{(i)}) = \Phi_i^\top B \Phi_i
\end{align*}
\]

Steps:
- linear parameterization of \(V \)
- SoS representation of the Hamiltonian
- subsampling equalities
- kernel trick
An algorithm for smooth optimal control

\[
\sup_{\theta \in \mathbb{R}^m, \, B \succeq 0} V_\theta(0, x_0) - \lambda \text{Tr}(B) \\
\forall i, H_\theta(t^{(i)}, x^{(i)}, u^{(i)}) = \Phi_i^\top B \Phi_i
\]

Steps:
- linear parameterization of \(V \)
- SoS representation of the Hamiltonian
- subsampling equalities
- kernel trick

\(\rightarrow \) This is an SDP of size \(n \times n \).

Sample-based version of the method of [Lasserre et al., 2010].
Numerical example

On a simple linear quadratic regulator:
Contents

1. Introduction

2. Max-Plus Discretization of Deterministic MDPs

3. Infinite-Dimensional Sums-of-Squares for Optimal Control

4. Convergence of Non-parametric Temporal-Difference Learning

5. Conclusion & Perspectives
Policy evaluation

Given a fixed policy π, we want to evaluate:

$$V^*(x) = \mathbb{E}_{\pi} \left[\sum_{n=0}^{+\infty} \gamma^n r(x_n) \mid x_0 = x \right],$$

without knowing $r \in L^2$ nor the transition probabilities.
Policy evaluation

Given a fixed policy \(\pi \), we want to evaluate:

\[
V^*(x) = \mathbb{E}_\pi \left[\sum_{n=0}^{+\infty} \gamma^n r(x_n) \bigg| x_0 = x \right],
\]

without knowing \(r \in L^2 \) nor the transition probabilities.

We only observe samples of transitions from the Markov chain:

\[
(x_k, r(x_k), x'_k)_{1 \leq k \leq n}
\]
TD(0) with linear function approximation

Linear approximation of the value function:

\[V^*(x) \simeq \xi^\top \varphi(x), \text{ for some } \xi \in \mathbb{R}^p. \]

TD(0): sample a transition \((x_n, r(x_n), x'_n)\) and update:

\[\xi_n = \xi_{n-1} + \rho_n \left[r(x_n) + \gamma V_{n-1}(x'_n) - V_{n-1}(x_n) \right] \varphi(x_n), \]

Converges under classical assumptions for stochastic approximation, but may not converge to something different from \(V^*\) if \([Tsitsiklis and Van Roy, 1997], [Bhandari et al., 2018]\). Can we fix this with a universal approximator?
TD(0) with linear function approximation

Linear approximation of the value function:

\[V^*(x) \approx \xi^\top \varphi(x), \text{ for some } \xi \in \mathbb{R}^p. \]

TD(0): Sample a transition \((x_n, r(x_n), x'_n)\) and update:

\[\xi_n = \xi_{n-1} + \rho_n \left[r(x_n) + \gamma V_{n-1}(x'_n) - V_{n-1}(x_n) \right] \varphi(x_n), \]

Converges under classical assumptions for stochastic approximation, \(\Delta\) to something different from \(V^*\) if \(V^* \notin \text{span}(\varphi_1, \ldots, \varphi_p)\).

[Tsitsiklis and Van Roy, 1997], [Bhandari et al., 2018]
TD(0) with linear function approximation

Linear approximation of the value function:

\[V^*(x) \simeq \xi^\top \varphi(x), \text{ for some } \xi \in \mathbb{R}^p. \]

TD(0): sample a transition \((x_n, r(x_n), x'_n)\) and update:

\[\xi_n = \xi_{n-1} + \rho_n \left[r(x_n) + \gamma V_{n-1}(x'_n) - V_{n-1}(x_n) \right] \varphi(x_n), \]

Converges under classical assumptions for stochastic approximation, \(\triangle\) to something different from \(V^*\) if \(V^* \notin \text{span}(\varphi_1, \ldots, \varphi_p)\).

[Tsitsiklis and Van Roy, 1997], [Bhandari et al., 2018]

Can we fix this with a universal approximator?
TD(0) with linear function approximation

Linear approximation of the value function:

\[V^*(x) \simeq \xi^\top \varphi(x), \text{ for some } \xi \in \mathbb{R}^p. \]

TD(0): sample a transition \((x_n, r(x_n), x'_n)\) and update:

\[\xi_n = \xi_{n-1} + \rho_n \left[r(x_n) + \gamma V_{n-1}(x'_n) - V_{n-1}(x_n) \right] \varphi(x_n), \]

Converges under classical assumptions for stochastic approximation, \(\triangleq\) to something different from \(V^*\) if \(V^* \notin \text{span}(\varphi_1, \ldots, \varphi_p, \ldots)\).

[Tsitsiklis and Van Roy, 1997], [Bhandari et al., 2018]

Can we fix this with a universal approximator?
Non-parametric TD(0)

Sample a transition \((x_n, r(x_n), x'_n)\) and update:

\[
V_n = V_{n-1} + \rho_n \left[r(x_n) + \gamma V_{n-1}(x'_n) - V_{n-1}(x_n) \right] K(x_n, \cdot),
\]

where \(K\) is the reproducing kernel of an RKHS \(\mathcal{H} \subset L^2\).
Non-parametric TD(0)

Sample a transition \((x_n, r(x_n), x'_n)\) and update:

\[
V_n = V_{n-1} + \rho_n \left[r(x_n) + \gamma V_{n-1}(x'_n) - V_{n-1}(x_n) \right] K(x_n, \cdot),
\]

where \(K\) is the reproducing kernel of an RKHS \(\mathcal{H} \subset L^2\).

- the iterates are in \(\mathcal{H}\) (functional space)
Non-parametric TD(0)

Sample a transition \((x_n, r(x_n), x'_n)\) and update:

\[
V_n = V_{n-1} + \rho_n \left[r(x_n) + \gamma V_{n-1}(x'_n) - V_{n-1}(x_n) \right] K(x_n, \cdot),
\]

where \(K\) is the reproducing kernel of an RKHS \(\mathcal{H} \subset L^2\).

- the iterates are in \(\mathcal{H}\) (functional space)
- recovers linear approximation with \(K(x, y) = \varphi(x)^\top \varphi(y)\)
Non-parametric TD(0)

Sample a transition \((x_n, r(x_n), x'_n)\) and update:

\[
V_n = V_{n-1} + \rho_n \left[r(x_n) + \gamma V_{n-1}(x'_n) - V_{n-1}(x_n) \right] K(x_n, \cdot),
\]

where \(K\) is the reproducing kernel of an RKHS \(\mathcal{H} \subset L^2\).

- the iterates are in \(\mathcal{H}\) (functional space)
- recovers linear approximation with \(K(x, y) = \varphi(x)^\top \varphi(y)\)
- universal kernel such that \(\overline{\mathcal{H}} = L^2\) (e.g., Sobolev kernel)

\rightarrow convergence to \(V^*\) in \(L^2\)-norm, even if \(V^* \notin \mathcal{H}\).
Non-parametric TD(0)

Sample a transition \((x_n, r(x_n), x'_n)\) and update:

\[
V_n = V_{n-1} + \rho_n \left[r(x_n) + \gamma V_{n-1}(x'_n) - V_{n-1}(x_n) \right] K(x_n, \cdot),
\]

where \(K\) is the reproducing kernel of an RKHS \(\mathcal{H} \subset L^2\).

- the iterates are in \(\mathcal{H}\) (functional space)
- recovers linear approximation with \(K(x, y) = \varphi(x)\top \varphi(y)\)
- universal kernel such that \(\overline{\mathcal{H}} = L^2\) (e.g., Sobolev kernel)

\[\rightarrow\] convergence to \(V^*\) in \(L^2\)-norm, even if \(V^* \notin \mathcal{H}\).

Let us define the **covariance operator** [De Vito et al., 2005]:

\[
\Sigma = \mathbb{E}[K(x, \cdot) \otimes K(x, \cdot)].
\]
Main convergence result

Theorem ([Berthier, Kobeissi and Bach, 2022])

Assume that for some $\theta \in (-1, 1]$:

$$\|\Sigma^{-\theta/2} V^*\|_H < +\infty.$$ \hspace{1cm} \text{(source condition)}

Then with suitable regularization, step size and averaging scheme:

$$E \left[\|\overline{V}_n - V^*\|_{L^2}^2 \right] = O \left((\log n)^2 n^{-\frac{1+\theta}{2+\theta}} \right).$$
Main convergence result

Theorem ([Berthier, Kobeissi and Bach, 2022])

Assume that for some $\theta \in (-1, 1]$:

$$\|\Sigma^{-\theta/2} V^*\|_H < +\infty.$$ \hspace{1cm} (source condition)

Then with suitable regularization, step size and averaging scheme:

$$E \left[\|\overline{V}_n - V^*\|_{L^2}^2 \right] = O \left((\log n)^2 n^{-\frac{1+\theta}{2+\theta}} \right).$$

- $\theta = 0$: $V^* \in \mathcal{H}$ recovers known $1/\sqrt{n}$ parametric rate.
- $\theta \in (0, 1]$: stronger assumption, faster rate.
- $\theta = -1$: $V^* \in L^2$, only asymptotic convergence.
- $\theta \in (-1, 0)$: $V^* \notin \mathcal{H}$, weaker assumption, slower rate.
Main convergence result

Theorem ([Berthier, Kobeissi and Bach, 2022])

Assume that for some $\theta \in (-1, 1)$:

$$\| \Sigma^{-\theta/2} V^* \|_{\mathcal{H}} < +\infty.$$
(source condition)

Then with suitable regularization, step size and averaging scheme:

$$\mathbb{E} \left[\| \bar{V}_n - V^* \|_{L^2}^2 \right] = O \left((\log n)^2 n^{-\frac{1+\theta}{2+\theta}} \right).$$

- Theorem proved in the \textit{i.i.d.} sampling setting.
- Extends to sampling from a Markov chain with exponential mixing, with an additional boundedness assumption.
- Results are similar to SGD ($\gamma = 0$) [Dieuleveut and Bach, 2016].
Sketch of the proof

1. The ODE method: study the average update in continuous-time

\[
\frac{d V_t}{dt} = \mathbb{E} [(r(x) + \gamma V_t(x') - V_t(x))K(x, \cdot)]
\]
Sketch of the proof

1. The ODE method: study the average update in continuous-time
2. Prove the stability of the ODE with a Lyapunov function

\[\frac{d}{dt} \| V_t - V^* \|_H^2 < 0. \]
Sketch of the proof

1. The ODE method: study the average update in continuous-time
2. Prove the stability of the ODE with a Lyapunov function

\[
\frac{d}{dt} \| V_t - V^* \|^2_{\mathcal{H}} < 0.
\]

With Polyak-Ruppert averaging:

\[
\| \overline{V}_t - V^* \|^2_{L^2} \leq \frac{1}{2(1 - \gamma)} \frac{\| V^* \|^2_{\mathcal{H}}}{t}.
\]
Sketch of the proof

1. The ODE method: study the average update in continuous-time

2. Prove the stability of the ODE with a Lyapunov function
\[
\frac{d}{dt} \| V_t - V^* \|^2_H < 0.
\]

With Polyak-Ruppert averaging:
\[
\| \overline{V}_t - V^* \|^2_{L^2} \leq \frac{1}{2(1 - \gamma)} \cdot \frac{\| V^* \|^2_H}{t}.
\]
Sketch of the proof

1. The ODE method: study the average update in continuous-time
2. Prove the stability of the ODE with a Lyapunov function
3. If $V^* \not\in \mathcal{H}$, add an extra regularization

$$\frac{dV_t}{dt} = \mathbb{E} \left[(r(x) + \gamma V_t(x') - V_t(x))K(x, \cdot) \right] - \lambda V_t$$
Sketch of the proof

1. The ODE method: study the average update in continuous-time
2. Prove the stability of the ODE with a Lyapunov function
3. If $V^* \notin \mathcal{H}$, add an extra regularization

$$\frac{dV_t}{dt} = \mathbb{E}\left[(r(x) + \gamma V_t(x') - V_t(x))K(x, \cdot) \right] - \lambda V_t$$

→ tradeoff in the choice of λ, depending on θ.
Numerical experiment

Sobolev kernel of regularity s on the 1d torus. Source condition θ: decrease of Fourier coefficients of V^*:

$$|\hat{V}_0^*|^2 + \sum_{\omega \neq 0} |\omega|^{2s(1+\theta)} |\hat{V}_\omega^*|^2 < \infty.$$
Contents

1 Introduction

2 Max-Plus Discretization of Deterministic MDPs

3 Infinite-Dimensional Sums-of-Squares for Optimal Control

4 Convergence of Non-parametric Temporal-Difference Learning

5 Conclusion & Perspectives
Summary of the contributions

1. A max-plus approximation scheme applied to the discretization of deterministic MDPs.

2. A method for estimating stability regions on robust classes of dynamical systems.

Perspectives

Control problems from a machine learning viewpoint:

- **approximation** – model of the value function? the Hamiltonian?
- **estimation** – sample complexities? stochastic approximation?
- **optimization** – primal-dual formulation? link with SGD?
Thank you for your attention!
References (1)

M. Akian, S. Gaubert, and A. Lakhoua.
The max-plus finite element method for solving deterministic optimal control problems: basic properties and convergence analysis.

J. Bhandari, D. Russo, and R. Singal.
A finite time analysis of temporal difference learning with linear function approximation.

Learning from examples as an inverse problem.

A. Dieuleveut and F. Bach.
Nonparametric stochastic approximation with large step-sizes.
References (2)

W. H. Fleming and W. M. McEneaney.
A max-plus-based algorithm for a Hamilton–Jacobi–Bellman equation of nonlinear filtering.

Nonlinear optimal control via occupation measures and LMI-relaxations.

D. Liberzon.
Calculus of Variations and Optimal Control Theory: A Concise Introduction.

E. Novak.
Deterministic and Stochastic Error Bounds in Numerical Analysis.

