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The optimal control problem

An optimization problem [Liberzon, 2011]:

inf
u(·)

∫ T

0
L(x(t), u(t))dt +M(x(T ))

s.t. ∀t ∈ [0,T ], ẋ(t) = f (x(t), u(t))

x(0) = x0.

Ingredients:

• A controlled dynamics

• A running cost and a terminal cost

• An infinite-dimensional minimization problem
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Optimality conditions

Parallel approaches to solve optimal control problems [Trélat, 2005]:

• Pontryagin’s Maximum Principle [Pontryagin et al., 1974]:
generalization of the Karush–Kuhn–Tucker necessary conditions.
→ indirect shooting methods.

• Bellman’s Optimality Principle [Bellman, 1954]:
“Whatever the first decisions, the remaining ones must be optimal
with regard to the state resulting from the first decisions.”
→ dynamic programming.
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Optimality conditions: the value function

Key object: the value function

V ∗(t0, x0) = inf
u(·)

∫ T

t0

L(x(t), u(t))dt +M(x(T ))

s.t. ∀t ∈ [t0,T ], ẋ(t) = f (x(t), u(t))

x(t0) = x0.

The Hamilton-Jacobi-Bellman PDE [Crandall, Evan and Lions, 1984]:

∀(t, x), ∂V

∂t
(t, x) + inf

u∈U

{
L(x , u) +∇V (t, x)⊤f (x , u)

}
= 0

∀x , V (T , x) = M(x).
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Elöıse Berthier, Supervised by Francis Bach -

Efficient Algorithms for Control and Reinforcement Learning



Optimality conditions: the value function

Key object: the value function

V ∗(t0, x0) = inf
u(·)

∫ T

t0

L(x(t), u(t))dt +M(x(T ))

s.t. ∀t ∈ [t0,T ], ẋ(t) = f (x(t), u(t))
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The reinforcement learning problem

A stochastic optimization problem [Sutton and Barto, 2018]:

max
π:S→A

Ep

[
+∞∑
t=0

γtr(st , π(st))

]
s.t. ∀t ∈ N, st+1 ∼ p(s ′ | s = st , a = π(st))

s0 = s.

Ingredients:

• An unknown controlled stochastic dynamics

• An unknown discounted reward

• A maximization problem

6 of 36
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Dynamic programming

Key object: the value function

V ∗(s) = max
π

Ep

[
+∞∑
t=0

γtr(st , π(st))
∣∣∣ s0 = s

]
.

V ∗ is the fixed point of the Bellman operator T defined by:

TV (s) = max
a∈A

{
r(s, a) + γEp(·|s,a)V (s ′)

}
Algorithms:

• Value Iteration: Vk = T kV0 converges to V ∗ if γ ∈ [0, 1).

• Temporal-Difference Learning : estimate the Bellman operator
from observed transitions, for policy evaluation.
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Requirements for modern applications

• The dynamical systems are nonlinear
⇒ linear control methods cannot be used directly.

• The dimensions of the systems are (relatively) large
⇒ approximation is needed.

• There are modeling uncertainties
⇒ estimation is needed.

• Some computations are done in real-time, embedded systems
⇒ memory/time efficient algorithms are needed.
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Elöıse Berthier, Supervised by Francis Bach -

Efficient Algorithms for Control and Reinforcement Learning



Requirements for modern applications

• The dynamical systems are nonlinear
⇒ linear control methods cannot be used directly.

• The dimensions of the systems are (relatively) large
⇒ approximation is needed.

• There are modeling uncertainties
⇒ estimation is needed.

• Some computations are done in real-time, embedded systems
⇒ memory/time efficient algorithms are needed.

8 of 36
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Research questions

Questions explored throughout this thesis:

1. How to exploit partial knowledge of the model? [estimation]

2. How to represent the value function? [approximation]
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Q1: How to exploit partial knowledge of the model?

“The controller” “The reinforcement learner”

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

known approximate offline online partial
model model observations observations observability
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Q2: How to represent the value function?

• If S is a finite set: tabular storage of V (s), s ∈ {1, ..., |S|}
→ does not fit in memory if |S| is too large !△

• If S is a continuous set: parameterization Vθ, θ ∈ Rp

→ curse of dimensionality if dim(S) is large !△

Solution: exploit some regularity or structure on V .

Tools used in our work:

• Max-plus linear parameterization

• Non-parametric representations in an RKHS
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State-discretization of an MDP

Consider a deterministic MDP defined by:

• a continuous state space S ⊂ Rd ,

• a discrete action space A,
• a bounded reward function r : S ×A → [−R,R],
• a dynamics φ.(.) : S ×A → S.

We want to discretize it into a finite MDP, to run value iteration.

Problem: A naive discretization requires a very tight
state-discretization to capture the dynamics, whose size blows up
with the dimension.

→ Can we build a better discretization?
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Max-plus linear approximation

The max-plus semiring is defined as (R ∪ {−∞},⊕,⊗), where ⊕
represents the maximum operator, and ⊗ represents the usual sum.

Let W = (w1, ...,wk) be a dictionary of functions wi : S → R.

For α ∈ Rk , we define the max-plus linear combination [Fleming and
McEneaney, 2000]:

V (s) =
k⊕

i=1

αi ⊗ wi (s) = max
1≤i≤k

αi + wi (s) .
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Dictionaries for discretization

Piecewise constant value functions are natural candidates for a
discretization, suggesting the following dictionaries:

• Indicator: w(s) =

{
0 if s ∈ A

−∞ otherwise

• Soft indicator: w(s) = −c dist(s,A)2, with c large.
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Max-plus projection

A function V ∈ RS can be lower- (or upper-) projected onto W .
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Max-plus projection

A function V ∈ RS can be lower- (or upper-) projected onto W .

Proposition ([Berthier and Bach, 2020])

Let (A1, ...,Ak) a partition of S where each Ai is convex, compact
and non-empty, and let D = max1≤i≤k diam(Ai ).
Let W = (w1, ...,wk) defined by:

wi (s) = −c dist(s,Ai )
2

If V has Lipschitz constant L and c ≥ L
4D , then

∥V − PW (V )∥∞ ≤ 2LD

← independent of c
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Max-plus projection

A function V ∈ RS can be lower- (or upper-) projected onto W .

Can we compute PW (V ∗) without knowing V ∗?
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Approximate value iteration

We follow the method of [Akian et al., 2008]. Using the max-plus
linearity of the Bellman operator, it decouples into two steps:

1. k2 precomputations of the form:

Kij = sup
s∈S, a∈A

wi (s) + r(s, a) + γwj(φa(s)) .

2. A reduced value iteration algorithm on a finite MDP with k states
and k actions, which uses the Kij .
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Approximate precomputations
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a∈A

sup
s∈S
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Approximate precomputations

Kij = max
a∈A

sup
s∈S

wi (s) + r(s, a) + γwj(φa(s))︸ ︷︷ ︸
gradient ascent on s (≃ concave) → K̂ij

.
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wi (s) + r(s, a) + γwj(φa(s))︸ ︷︷ ︸
gradient ascent on s (≃ concave) → K̂ij

.

Decomposition of errors:

Theorem ([Berthier and Bach, 2020])

Let V be the result of the reduced value iteration step. Then:

∥V − V ∗∥∞ ≤
1

1− γ

(
∥PW (V ∗)− V ∗∥∞ + ∥PW (V ∗)− V ∗∥∞

+ ∥K̂ − K∥∞
)
.
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Experiment (Cartpole, d = 4)
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Sample-based optimal control

We want to solve the optimal control problem:

V ∗(t0, x0) = inf
u(·)

∫ T

t0

L(t, x(t), u(t))dt +M(x(T ))

∀t ∈ [t0,T ], ẋ(t) = f (t, x(t), u(t)), x(0) = x0.

without knowing f and L.

We only observe samples:

f (t(i), x (i), u(i)), L(t(i), x (i), u(i)),

for i ∈ {1, ..., n} = I .
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Weak-formulation of optimal control

The optimal control problem:

V ∗(t0, x0) = inf
u(·)

∫ T

t0

L(t, x(t), u(t))dt +M(x(T ))

∀t ∈ [t0,T ], ẋ(t) = f (t, x(t), u(t)), x(0) = x0.

is equivalent (under convexity assumptions) to finding a maximal
subsolution of the HJB equation [Lasserre et al., 2010]:

sup
V∈C1([0,T ]×X )

V (0, x0)

∀(t, x , u), ∂V
∂t

(t, x) + L(t, x , u) +∇V (t, x)⊤f (t, x , u) ≥ 0

∀x , V (T , x) ≤ M(x).
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Elöıse Berthier, Supervised by Francis Bach -

Efficient Algorithms for Control and Reinforcement Learning



Weak-formulation of optimal control

The optimal control problem:

V ∗(t0, x0) = inf
u(·)

∫ T

t0

L(t, x(t), u(t))dt +M(x(T ))
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A simple baseline: linear programming

Using a linear parameterization of V , and simply subsampling
inequalities leads to an LP:

sup
θ∈Rm

Vθ(0, x0)

∀i ∈ I , Hθ(t
(i), x (i), u(i)) ≥ 0.

This readily gives a first numerical method.

Can we do any better?

24 of 36
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SoS representation of non-negative functions

sup
θ∈Rm

Vθ(0, x0)

∀(t, x , u), Hθ(t, x , u) ≥ 0.

If we represent some gk of the form:

gk(y) = ⟨αk , φ(y)⟩.
Then we can generate a non-negative function as a sum-of-squares:

g(y) =
m∑

k=1

gk(y)
2

= ⟨φ(y),Aφ(y)⟩.

where A =
∑m

k=1 αk ⊗ αk ⪰ 0.
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Elöıse Berthier, Supervised by Francis Bach -

Efficient Algorithms for Control and Reinforcement Learning



SoS representation of the Hamiltonian

Theorem ([Berthier, Carpentier, Rudi and Bach, 2022])

Assume that:
• f is control-affine: f (t, x , u) = g(t, x) + B(t, x)u;
• L is strongly convex in u;
• L, B and V ∗ are sufficiently smooth;
Then H∗ is a SoS of p smooth functions (wj)1≤j≤p ∈ C s(Ω):

∀(t, x , u) ∈ Ω, H∗(t, x , u) =

p∑
j=1

wj(t, x , u)
2.

!△ In general V ∗ is not even C 1.
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An algorithm for smooth optimal control

sup
V∈C1([0,T ]×X )

V (0, x0)

∀(t, x , u), H(t, x , u) ≥ 0

∀x , V (T , x) ≤ M(x)

Steps:

• linear parameterization of V
• SoS representation of the Hamiltonian
• subsampling equalities
• kernel trick

→ This is an SDP of size n × n.

Sample-based version of the method of [Lasserre et al., 2010].
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Elöıse Berthier, Supervised by Francis Bach -

Efficient Algorithms for Control and Reinforcement Learning



An algorithm for smooth optimal control

sup
θ∈Rm

Vθ(0, x0)

∀(t, x , u), Hθ(t, x , u) ≥ 0

Steps:
• linear parameterization of V

• SoS representation of the Hamiltonian
• subsampling equalities
• kernel trick

→ This is an SDP of size n × n.

Sample-based version of the method of [Lasserre et al., 2010].

27 of 36
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An algorithm for smooth optimal control

sup
θ∈Rm, A∈S+(H)

Vθ(0, x0)

∀(t, x , u), Hθ(t, x , u) =⟨φ(t, x , u),Aφ(t, x , u)⟩
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An algorithm for smooth optimal control

sup
θ∈Rm, A∈S+(H)

Vθ(0, x0)− λTr(A)

∀i , Hθ(t
(i), x (i), u(i)) =⟨φ(t(i), x (i), u(i)),Aφ(t(i), x (i), u(i))⟩

Steps:
• linear parameterization of V
• SoS representation of the Hamiltonian
• subsampling equalities

• kernel trick

→ This is an SDP of size n × n.

Sample-based version of the method of [Lasserre et al., 2010].
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An algorithm for smooth optimal control

sup
θ∈Rm, B⪰0

Vθ(0, x0)− λTr(B)

∀i , Hθ(t
(i), x (i), u(i)) = Φ⊤

i BΦi

Steps:
• linear parameterization of V
• SoS representation of the Hamiltonian
• subsampling equalities
• kernel trick

→ This is an SDP of size n × n.

Sample-based version of the method of [Lasserre et al., 2010].
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Numerical example

On a simple linear quadratic regulator:

5 10 15 20
nx, nu
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Cost of policy

LP
kernel SoS
projection
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Policy evaluation

Given a fixed policy π, we want to evaluate:

V ∗(x) = Eπ

[
+∞∑
n=0

γnr(xn)
∣∣∣x0 = x

]
,

without knowing r ∈ L2 nor the transition probabilities.

We only observe samples of transitions from the Markov chain:

(xk , r(xk), x
′
k)1≤k≤n
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TD(0) with linear function approximation

Linear approximation of the value function:

V ∗(x) ≃ ξ⊤φ(x), for some ξ ∈ Rp.

TD(0): sample a transition (xn, r(xn), x
′
n) and update:

ξn = ξn−1 + ρn
[
r(xn) + γVn−1(x

′
n)− Vn−1(xn)

]
φ(xn),

Converges under classical assumptions for stochastic approximation,
!△ to something different from V ∗ if

[Tsitsiklis and Van Roy, 1997], [Bhandari et al., 2018]

Can we fix this with a universal approximator?
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Elöıse Berthier, Supervised by Francis Bach -

Efficient Algorithms for Control and Reinforcement Learning



TD(0) with linear function approximation

Linear approximation of the value function:

V ∗(x) ≃ ξ⊤φ(x), for some ξ ∈ Rp.

TD(0): sample a transition (xn, r(xn), x
′
n) and update:

ξn = ξn−1 + ρn
[
r(xn) + γVn−1(x

′
n)− Vn−1(xn)

]
φ(xn),

Converges under classical assumptions for stochastic approximation,
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[Tsitsiklis and Van Roy, 1997], [Bhandari et al., 2018]

Can we fix this with a universal approximator?
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Non-parametric TD(0)

Sample a transition (xn, r(xn), x
′
n) and update:

Vn = Vn−1 + ρn
[
r(xn) + γVn−1(x

′
n)− Vn−1(xn)

]
K (xn, ·),

where K is the reproducing kernel of an RKHS H ⊂ L2.

• the iterates are in H (functional space)
• recovers linear approximation with K (x , y) = φ(x)⊤φ(y)
• universal kernel such that H = L2 (e.g., Sobolev kernel)

→ convergence to V ∗ in L2-norm, even if V ∗ /∈ H.

Let us define the covariance operator [De Vito et al., 2005]:

Σ = E[K (x , ·)⊗ K (x , ·)].
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Elöıse Berthier, Supervised by Francis Bach -

Efficient Algorithms for Control and Reinforcement Learning



Non-parametric TD(0)

Sample a transition (xn, r(xn), x
′
n) and update:

Vn = Vn−1 + ρn
[
r(xn) + γVn−1(x

′
n)− Vn−1(xn)

]
K (xn, ·),

where K is the reproducing kernel of an RKHS H ⊂ L2.

• the iterates are in H (functional space)
• recovers linear approximation with K (x , y) = φ(x)⊤φ(y)
• universal kernel such that H = L2 (e.g., Sobolev kernel)

→ convergence to V ∗ in L2-norm, even if V ∗ /∈ H.

Let us define the covariance operator [De Vito et al., 2005]:

Σ = E[K (x , ·)⊗ K (x , ·)].

31 of 36
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Main convergence result

Theorem ([Berthier, Kobeissi and Bach, 2022])

Assume that for some θ ∈ (−1, 1]:

∥Σ−θ/2V ∗∥H < +∞ . (source condition)

Then with suitable regularization, step size and averaging scheme:

E
[
∥V n − V ∗∥2L2

]
= O

(
(log n)2n−

1+θ
2+θ

)
.
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Main convergence result

Theorem ([Berthier, Kobeissi and Bach, 2022])

Assume that for some θ ∈ (−1, 1]:

∥Σ−θ/2V ∗∥H < +∞ . (source condition)

Then with suitable regularization, step size and averaging scheme:

E
[
∥V n − V ∗∥2L2

]
= O

(
(log n)2n−

1+θ
2+θ

)
.

• θ = 0: V ∗ ∈ H recovers known 1/
√
n parametric rate.

• θ ∈ (0, 1]: stronger assumption, faster rate.
• θ = −1: V ∗ ∈ L2, only asymptotic convergence.
• θ ∈ (−1, 0): V ∗ /∈ H, weaker assumption, slower rate.
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Main convergence result

Theorem ([Berthier, Kobeissi and Bach, 2022])

Assume that for some θ ∈ (−1, 1]:

∥Σ−θ/2V ∗∥H < +∞ . (source condition)

Then with suitable regularization, step size and averaging scheme:

E
[
∥V n − V ∗∥2L2

]
= O

(
(log n)2n−

1+θ
2+θ

)
.

• Theorem proved in the i.i.d. sampling setting.
• Extends to sampling from a Markov chain with exponential
mixing, with an additional boundedness assumption.

• Results are similar to SGD (γ = 0) [Dieuleveut and Bach, 2016].
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Sketch of the proof

1. The ODE method: study the average update in continuous-time

dVt

dt
= E

[
(r(x) + γVt(x

′)− Vt(x))K (x , ·)
]

2. Prove the stability of the ODE with a Lyapunov function

3. If V ∗ /∈ H, add an extra regularization

dVt

dt
= E

[
(r(x) + γVt(x

′)− Vt(x))K (x , ·)
]
− λVt
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1. The ODE method: study the average update in continuous-time
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Sketch of the proof

1. The ODE method: study the average update in continuous-time

2. Prove the stability of the ODE with a Lyapunov function

3. If V ∗ /∈ H, add an extra regularization

dVt

dt
= E

[
(r(x) + γVt(x

′)− Vt(x))K (x , ·)
]
− λVt
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Sketch of the proof

1. The ODE method: study the average update in continuous-time
2. Prove the stability of the ODE with a Lyapunov function
3. If V ∗ /∈ H, add an extra regularization

dVt

dt
= E

[
(r(x) + γVt(x

′)− Vt(x))K (x , ·)
]
− λVt

→ tradeoff in the choice of λ, depending on θ.
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Numerical experiment

Sobolev kernel of regularity s on the 1d torus.
Source condition θ: decrease of Fourier coefficients of V ∗:

|V̂ ∗
0 |2 +

∑
ω ̸=0

|ω|2s(1+θ)|V̂ ∗
ω |2 <∞.

102 103

10−3

10−2

10−1

100

||V
(e

)
n

−
V

* |
|2 L2

n

r= rabs, K=K2
ε= 1
ε= 0.8
ε= 0.5
ε= 0.2
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Summary of the contributions

1. A max-plus approximation scheme applied to the discretization of
deterministic MDPs.

2. A method for estimating stability regions on robust classes of
dynamical systems.

3. A sample-based algorithm for optimal control problems, based on
a SoS representation of non-negative functions.

4. Convergence rates for non-parametric TD learning.
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Elöıse Berthier, Supervised by Francis Bach -

Efficient Algorithms for Control and Reinforcement Learning



Perspectives

Control problems from a machine learning viewpoint:

• approximation – model of the value function? the Hamiltonian?

• estimation – sample complexities? stochastic approximation?

• optimization – primal-dual formulation? link with SGD?
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Thank you for your attention!
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