
Fast and Robust Stability
Region Estimation for

Nonlinear Dynamical Systems
European Control Conference 2021

Eloïse Berthier, Justin Carpentier, Francis Bach

July 1, 2021



Motivation: Feedback Motion Planning

Three steps in LQR-trees [TMTR10]:
1 create a tree of trajectories [LK01];
2 find a stability region around each trajectory;
3 deduce a global controller [BRK99, TMT11].
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LQR Feedback Controller

Let a nonlinear controlled dynamical system:

ẋ = f (x , u)

with equilibrium point: f (0, 0) = 0. Then:

f (x , u) =
∂f

∂x
(0, 0)x︸ ︷︷ ︸
Ax

+
∂f

∂u
(0, 0)u︸ ︷︷ ︸
Bu

+o(x) + o(u).

Consider the LQR problem for the linearized system ẋ = Ax +Bu:

min
u(·)

∫ +∞

0
(x>(t)Qx(t) + u>(t)Ru(t))dt, with x(0) = x .
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LQR Feedback Controller

The cost-minimizing controller is:

u(x) = −R−1B>Sx =: −Kx ,

where S is the symmetric positive definite solution of the algebraic
Riccati equation, which exists if (A,B) is controllable:

A>S + SA− SBR−1B>S = −Q.

Under the closed-loop controller u = −Kx , the system is
autonomous with

ẋ = f (x ,−Kx) =: g(x).
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Lyapunov Functions

Stability Region Estimation (fixed controller)

Find a maximal region R containing states x0 such that

x(0) = x0, ẋ = f (x ,−Kx) =⇒ lim
t→+∞

x(t) = 0.

One approach is to find a Lyapunov function V and a region R
such that:

V (0) = 0,
∀x ∈ R \ {0}, V (x) > 0,
∀x ∈ R \ {0}, V̇ (x) < 0.
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Stability Region Estimation

A natural candidate Lyapunov function is
the LQR cost-to-go:

V (x) = x>Sx ≥ 0.

The candidate R are the sublevel sets of V :

Bρ := {x | x>Sx ≤ ρ}.

Stability Region Estimation (fixed controller, fixed Lyapunov)

Find the maximal ρ such that

V (x) ≤ ρ, x 6= 0 =⇒ V̇ (x) < 0.
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Feedback Stability for Polynomial Systems

If the dynamics is polynomial, a sum-of-squares
relaxation of the condition is that there exists a
SOS polynomial σ(x) such that:

V̇ (x) + σ(x)(ρ− V (x)) < 0.

In practice, this is solved with a hierarchy of SDPs, with a matrix
of size Cd

n+d × Cd
n+d , for n ≥ 1.

→ intractable in (not so) large dimensions d ≈ 10.
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Robustness for Nonlinear Systems

Back to the linear system:

g(x) = f (x ,−Kx) = (A− BK )x .

Can we say something if the closed-loop system is almost linear,
locally around the equilibrium?

g(x) = (A− BK )x + δ(x).

This could account for uncertainties or model misspecifications,
and hence the method is robust. We study two cases:

First-order perturbation: δ(x) = Āx , Ā ∈ Ω,
Second-order perturbation: δ(x) = x>H̄x , H̄ ∈ Ξ.
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Linear Differential Inclusion

Consider the uncertain linear system [AC84]:

g(x) = Ax , A ∈ Ω,

where we know bounds on each entry of A:

Ω = {A0 + Γ | ∀i , j , |Γij | ≤ Uij}.

This can be recast as Ω = {A0 + C∆E | ‖∆‖ ≤ 1, ∆ diagonal},
for suitable C and E . ∆ has size d2 × d2.

11 / 24



Linear Differential Inclusion

Suppose we have an uncertain linear system:

g(x) = Ax , A ∈ Ω,

with Ω = {A0 + C∆E | ‖∆‖ ≤ 1, ∆ diagonal}.

Stability of an LDI
The asymptotic stability of this system with a fixed Lyapunov
function is equivalent to the feasibility of the following linear matrix
inequality (LMI) [BEGFB94]:

Find Λ � 0 ∈ Rd2×d2
diagonal such that:[

A>0 S + SA0 + E>ΛE SC

C>S −Λ

]
≺ 0.
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Bounded-Hessians Systems

Suppose that we have:

gk(x) = (A− BK )k·x +
1
2
x>H̄k(x)x .

Then:

V̇ (x) = 2x>S
(

(A− BK )x +
1
2

(x>Hk(x)x)k∈{1,...,d}

)
= x>(−Q − SBR−1B>S +

d∑
k=1

(Sk·x)Hk(x))x .

A sufficient condition for V̇ (x) < 0 is:

−Q − SBR−1B>S +
d∑

k=1

(Sk·x)H̄k(x) ≺ 0, ∀x 6= 0.

14 / 24



Bounded-Hessians Systems

Let M := Q + SBR−1B>S , and
T k(x) := M−1/2Hk(x)M−1/2.

If we know entrywise bounds on the rescaled Hessian T :

Ξ :=
d∏

k=1

Ξk , Ξk = {T ∈ Rd×d | ∀i , j , |Tij | ≤ Uk
ij }.

Then we can extract the maximal sublevel set ρ:

Stability Region Estimation (bounded Hessian)

ρ =
1
λ2
, where λ := sup

‖y‖2≤1
sup
T∈Ξ

λmax

(
d∑

k=1

(S
1/2
k· y)T k

)
.
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Stability Certificates

Theorem (A Second-Order Stability Certificate)

Bρa is a stability region for ρa := 1/λ2a and

λa := λmax

(
d∑

k=1

√
Sk·S−1S>k·U

k

)
.

Theorem (Another Second-Order Stability Certificate)

Bρb is a stability region for

ρb :=
1

d‖DS1/2‖22
, with D := Diag

(
‖Uk‖2

)
.
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Iterative Algorithm

Two ingredients:
O is an oracle bounding the derivatives
of g on some region;
C returns a stability certificate, given a candidate
Lyapunov function S and bounds on the derivatives U.

Input: S , C(), O(), ρ0 > 0, η ∈ (0, 1)
Output: A stability certificate on {x | x>Sx ≤ ρ}
1: ρup ← ρ0
2: repeat
3: U ← O(Bρup)
4: ρ← C(S , ρup,U)
5: ρup ← ηρup
6: until ρ ≥ ρup
7: return ρ
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Examples of Dynamical Systems

We consider controlled dynamical systems of
various dimensions around an equilibrium:

Pendulum
d = 4

UR-5 Robotic Arm
6 joints =⇒ dimension d = 12
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Results
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Running times
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Generalization to Trajectory Tracking

f

(t)


A funnel B(t) around a trajectory, obtained with C1.
R is a region of attraction around 0, and Bf is the target region.

The reference trajectory is displayed with arrows.
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Extension to Trajectory Tracking
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ρ(t) with different certificates, around a trajectory of Vanderpol.
The total CPU time is 7s for two iterations of SOS, 1s for C1, Ca2 .
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Conclusion

A general method to compute
stability certificates, that is:

simple to implement;
fast to compute;
tractable in large dimensions;
applicable to non-polynomial systems;
BUT less precise than SOS based certificates.

When integrated into the LQR-trees framework, is it better to
compute:

a lot of low-quality certificates with this method,
or a few tight certificates with SOS?
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