Fast and Robust Stability Region Estimation for Nonlinear Dynamical Systems European Control Conference 2021

Eloïse Berthier, Justin Carpentier, Francis Bach

July 1, 2021

Motivation: Feedback Motion Planning

Three steps in *LQR-trees* [TMTR10]:

- create a tree of trajectories [LK01];
- find a stability region around each trajectory;
- odeduce a global controller [BRK99, TMT11].

- Stability of the LQR Feedback
- Pirst-Order Perturbation
- Second-Order Perturbation

4 Numerical Experiments

LQR Feedback Controller

Let a nonlinear controlled dynamical system:

$$\dot{x} = f(x, u)$$

with equilibrium point: f(0,0) = 0. Then:

$$f(x,u) = \underbrace{\frac{\partial f}{\partial x}(0,0)x}_{Ax} + \underbrace{\frac{\partial f}{\partial u}(0,0)u}_{Bu} + o(x) + o(u).$$

Consider the LQR problem for the **linearized system** $\dot{x} = Ax + Bu$:

$$\min_{u(\cdot)} \int_0^{+\infty} (x^\top(t)Qx(t) + u^\top(t)Ru(t))dt, \text{ with } x(0) = x.$$

LQR Feedback Controller

The cost-minimizing controller is:

$$u(x) = -R^{-1}B^{\top}Sx =: -Kx,$$

where S is the symmetric positive definite solution of the algebraic Riccati equation, which exists if (A, B) is controllable:

$$A^{\top}S + SA - SBR^{-1}B^{\top}S = -Q.$$

Under the closed-loop controller u = -Kx, the system is autonomous with

$$\dot{x} = f(x, -Kx) =: g(x).$$

Lyapunov Functions

Stability Region Estimation (fixed controller)

Find a maximal region \mathcal{R} containing states x_0 such that

$$x(0) = x_0, \quad \dot{x} = f(x, -Kx) \implies \lim_{t \to +\infty} x(t) = 0.$$

One approach is to find a **Lyapunov function** V and a **region** \mathcal{R} such that:

- V(0) = 0,
- $\forall x \in \mathcal{R} \setminus \{0\}, \ V(x) > 0$,
- $\forall x \in \mathcal{R} \setminus \{0\}, \ \dot{V}(x) < 0.$

Stability Region Estimation

A natural candidate Lyapunov function is the LQR cost-to-go:

$$V(x) = x^{\top} Sx \geq 0.$$

The candidate \mathcal{R} are the sublevel sets of V:

$$\mathcal{B}_{\rho} := \{ x \mid x^{\top} S x \leq \rho \}.$$

Stability Region Estimation (fixed controller, fixed Lyapunov)

Find the maximal ρ such that

$$V(x) \le \rho, \ x \ne 0 \implies \dot{V}(x) < 0.$$

Feedback Stability for Polynomial Systems

If the dynamics is **polynomial**, a sum-of-squares relaxation of the condition is that there exists a SOS polynomial $\sigma(x)$ such that:

$$\dot{V}(x) + \sigma(x)(\rho - V(x)) < 0.$$

In practice, this is solved with a hierarchy of SDPs, with a matrix of size $C_{n+d}^d \times C_{n+d}^d$, for $n \ge 1$.

 \rightarrow intractable in (not so) large dimensions $d \approx 10$.

Robustness for Nonlinear Systems

Back to the linear system:

$$g(x) = f(x, -Kx) = (A - BK)x.$$

Can we say something if the closed-loop system is *almost* linear, locally around the equilibrium?

$$g(x) = (A - BK)x + \delta(x).$$

This could account for uncertainties or model misspecifications, and hence the method is robust. We study two cases:

- First-order perturbation: $\delta(x) = \bar{A}x, \ \bar{A} \in \Omega$,
- Second-order perturbation: $\delta(x) = x^{\top} \bar{H} x, \ \bar{H} \in \Xi$.

- Stability of the LQR Feedback
- 2 First-Order Perturbation
- Second-Order Perturbation

4 Numerical Experiments

Linear Differential Inclusion

Consider the uncertain linear system [AC84]:

$$g(x) = Ax, A \in \Omega,$$

where we know bounds on each entry of A:

$$\Omega = \{A_0 + \Gamma \mid \forall i, j, |\Gamma_{ij}| \leq U_{ij}\}.$$

This can be recast as $\Omega = \{A_0 + C\Delta E \mid ||\Delta|| \le 1, \ \Delta \text{ diagonal}\}$, for suitable C and E. Δ has size $d^2 \times d^2$.

Linear Differential Inclusion

Suppose we have an uncertain linear system:

$$g(x) = Ax, A \in \Omega,$$

with $\Omega = \{A_0 + C\Delta E \mid ||\Delta|| \le 1, \ \Delta \text{ diagonal}\}.$

Stability of an LDI

The asymptotic stability of this system with a fixed Lyapunov function is equivalent to the feasibility of the following linear matrix inequality (LMI) [BEGFB94]:

Find $\Lambda \succeq 0 \in \mathbb{R}^{d^2 \times d^2}$ diagonal such that:

$$\begin{bmatrix} A_0^\top S + S A_0 + E^\top \Lambda E & SC \\ C^\top S & -\Lambda \end{bmatrix} \prec 0.$$

- Stability of the LQR Feedback
- 2 First-Order Perturbation
- Second-Order Perturbation

4 Numerical Experiments

Bounded-Hessians Systems

Suppose that we have:

$$g_k(x) = (A - BK)_k.x + \frac{1}{2}x^{\top}\bar{H}^k(x)x.$$

Then:

$$\dot{V}(x) = 2x^{\top} S\left((A - BK)x + \frac{1}{2} (x^{\top} H^{k}(x)x)_{k \in \{1, \dots, d\}} \right)$$
$$= x^{\top} (-Q - SBR^{-1}B^{\top}S + \sum_{k=1}^{d} (S_{k} \cdot x)H^{k}(x))x.$$

A sufficient condition for $\dot{V}(x) < 0$ is:

$$-Q - SBR^{-1}B^{\top}S + \sum_{k=1}^{d} (S_k.x)\bar{H}^k(x) \prec 0, \ \forall x \neq 0.$$

Bounded-Hessians Systems

Let
$$M := Q + SBR^{-1}B^{T}S$$
, and $T^{k}(x) := M^{-1/2}H^{k}(x)M^{-1/2}$.

If we know entrywise bounds on the rescaled Hessian T:

$$\Xi := \prod_{k=1}^d \Xi^k, \quad \Xi^k = \{ T \in \mathbb{R}^{d \times d} \mid \forall i, j, |T_{ij}| \leq U_{ij}^k \}.$$

Then we can extract the maximal sublevel set ρ :

Stability Region Estimation (bounded Hessian)

$$\rho = \frac{1}{\lambda^2}, \text{ where } \lambda := \sup_{\|y\|_2 \leq 1} \sup_{T \in \Xi} \ \lambda_{\max} \left(\sum_{k=1}^d (S_k^{1/2} y) T^k \right).$$

Stability Certificates

Theorem (A Second-Order Stability Certificate)

 $\mathcal{B}_{
ho_a}$ is a stability region for $ho_a:=1/\lambda_a^2$ and

$$\lambda_a := \lambda_{\mathsf{max}} \left(\sum_{k=1}^d \sqrt{S_k . S^{-1} S_k^{\top}} U^k \right).$$

Theorem (Another Second-Order Stability Certificate)

 \mathcal{B}_{ρ_h} is a stability region for

$$\rho_b := \frac{1}{d\|DS^{1/2}\|_2^2}, \text{ with } D := Diag(\|U^k\|_2).$$

Iterative Algorithm

Two ingredients:

- O is an oracle bounding the derivatives of g on some region;
- C returns a stability certificate, given a candidate
 Lyapunov function S and bounds on the derivatives U.

```
Input: S, C(), O(), \rho_0 > 0, \eta \in (0,1)

Output: A stability certificate on \{x \mid x^\top Sx \leq \rho\}

1: \rho_{up} \leftarrow \rho_0

2: repeat

3: U \leftarrow O(\mathcal{B}_{\rho_{up}})

4: \rho \leftarrow C(S, \rho_{up}, U)

5: \rho_{up} \leftarrow \eta \rho_{up}

6: until \rho \geq \rho_{up}

7: return \rho
```

- Stability of the LQR Feedback
- 2 First-Order Perturbation
- Second-Order Perturbation

4 Numerical Experiments

Examples of Dynamical Systems

We consider controlled dynamical systems of various dimensions around an equilibrium:

Pendulum d = 4

UR-5 Robotic Arm 6 joints \implies dimension d=12

Results

TABLE 1. Radius and volume of the certified ROA for the different methods, relative to the values obtained by sampling for reference.

Dynamics	\mathfrak{C}_{1}		Ca 2		€ ^b ₂		sos		sampling	
	ρ/ρ_s	v/v_s	ρ/ρ_s	v/v_s	ρ/ρ_s	v/v_s	ρ/ρ_s	v/v_s	ρ/ρ_s	v/v_s
Vanderpol	0.20	0.20	0.14	0.14	0.10	0.10	1	1	1	1
Satellite	2.9×10^{-2}	2.6×10^{-5}	9.3×10^{-2}	9.4×10 ⁻⁴	7.9×10^{-2}	5.7×10 ⁻⁴	0.93	0.82	1	1
Pend. (bot.)	3.2×10^{-2}	1.1×10^{-3}	3.5×10 ⁻²	1.2×10^{-3}	4.2×10 ⁻²	1.9×10 ⁻³	1.4×10^{-2}	2.0×10^{-4}	1	1
Pend. (top)	5.1×10^{-3}	2.6×10^{-5}	4.5×10^{-2}	2.0×10^{-3}	4.7×10^{-2}	2.2×10^{-3}	N.A.	N.A.	1	1
Robot	2.4×10^{-3}	1.8×10^{-16}	7.1×10^{-3}	1.5×10^{-13}	1.5×10 ⁻²	1.2×10 ⁻¹¹	N.A.	N.A.	1	1

Running times

TABLE 2. CPU time (s) per iteration, except for SOS (total time).

Dynamics	$O + C_1$	$O + C_2^a$	$O + C_2^b$	sos	
Vanderpol	1.8×10^{-3}	1.1×10^{-4}	1.6×10^{-4}	0.05	
Satellite	1.2	0.17	0.17	32	
Pend. (bot.)	2.3	15	15	132	
Robot	2.3	32	33	N.A.	

Generalization to Trajectory Tracking

A funnel $\mathcal{B}(t)$ around a trajectory, obtained with \mathcal{C}_1 . \mathcal{R} is a region of attraction around 0, and \mathcal{B}_f is the target region. The reference trajectory is displayed with arrows.

Extension to Trajectory Tracking

 $\rho(t)$ with different certificates, around a trajectory of *Vanderpol*. The total CPU time is 7s for two iterations of SOS, 1s for C_1 , C_2^a .

Conclusion

A general method to compute stability certificates, that is:

- simple to implement;
- fast to compute;
- tractable in large dimensions;
- applicable to non-polynomial systems;
- BUT less precise than SOS based certificates.

When integrated into the **LQR-trees framework**, is it better to compute:

- a lot of low-quality certificates with this method,
- or a few tight certificates with SOS?

References I

Jean-Pierre Aubin and Arrigo Cellina, Differential inclusions: Set-valued maps and viability theory, Springer, 1984.

Stephen Boyd, Laurent El Ghaoui, Eric Feron, and Venkataramanan Balakrishnan, *Linear matrix inequalities in system and control theory*, vol. 15, Siam, 1994.

Robert R Burridge, Alfred A Rizzi, and Daniel E Koditschek, *Sequential composition of dynamically dexterous robot behaviors*, The International Journal of Robotics Research **18** (1999), no. 6, 534–555.

Steven M LaValle and James J Kuffner, *Rapidly-exploring random trees: Progress and prospects*, Algorithmic and Computational Robotics: New Directions (2001), no. 5, 293–308.

Mark M Tobenkin, Ian R Manchester, and Russ Tedrake, *Invariant funnels around trajectories using sum-of-squares programming*, IFAC Proceedings Volumes **44** (2011), no. 1, 9218–9223.

Russ Tedrake, Ian R Manchester, Mark Tobenkin, and John W Roberts, LQR-trees: Feedback motion planning via sums-of-squares verification, The International Journal of Robotics Research $\bf 29$ (2010), no. 8, 1038–1052.