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Motivation: Feedback Motion Planning

Three steps in LQR-trees [TMTR10]:
@ create a tree of trajectories [LKO1];
@ find a stability region around each trajectory;
© deduce a global controller [BRK99, TMT11].
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o Stability of the LQR Feedback
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LQR Feedback Controller

Let a nonlinear controlled dynamical system:
x = f(x,u)
with equilibrium point: (0,0) = 0. Then:

of of
aX(O 0)x + 8—(0 0)u+o(x) + o(u).

Ax Bu

f(x,u) =

Consider the LQR problem for the linearized system x = Ax + Bu:

min/+oo(xT(t)Qx(t)+uT(t)Ru(t))dt with x(0) = x.
u() Jo ’
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LQR Feedback Controller

The cost-minimizing controller is:
u(x) = —R71BTSx = —Kx,

where S is the symmetric positive definite solution of the algebraic
Riccati equation, which exists if (A, B) is controllable:

ATS+SA—SBRIBTS = Q.

Under the closed-loop controller u = —KXx, the system is
autonomous with

x = f(x,—Kx) =: g(x).
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Lyapunov Functions

Stability Region Estimation (fixed controller)

Find a maximal region R containing states xg such that

x(0) = x, x=f(x,—Kx) = t_l:rroox(t) =0.

One approach is to find a Lyapunov function V and a region R
such that:

e V(0)=0,
e Vx € R\ {0}, V(x) >0,
o Vx e R\ {0}, V(x) <O0.
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Stability Region Estimation

A natural candidate Lyapunov function is
the LQR cost-to-go:

V(x) =x"Sx>0.
The candidate R are the sublevel sets of V:

B, :={x | x"Sx < p}.

Stability Region Estimation (fixed controller, fixed Lyapunov)

Find the maximal p such that

V(x)<p, x#0 = V(x) <0.
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Feedback Stability for Polynomial Systems

If the dynamics is polynomial, a sum-of-squares
relaxation of the condition is that there exists a
SOS polynomial o(x) such that:

V(x)+o(x)(p— V(x)) <O0.
In practice, this is solved with a hierarchy of SDPs, with a matrix
of size CZ y x CZ,. 4, for n> 1.

— intractable in (not so) large dimensions d =~ 10.
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Robustness for Nonlinear Systems

Back to the linear system:
g(x) = f(x,—Kx) = (A— BK)x.

Can we say something if the closed-loop system is almost linear,
locally around the equilibrium?

g(x) = (A— BK)x + d(x).

This could account for uncertainties or model misspecifications,

and hence the method is robust. We study two cases:
o First-order perturbation:  §(x) = Ax, A € Q,
e Second-order perturbation: §(x) = x' Ax, H e =.
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© First-Order Perturbation
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Linear Differential Inclusion

Consider the uncertain linear system [AC84]:
g(x) =Ax, AeQ,
where we know bounds on each entry of A:
Q={Ao+T|Vij, |l < U}

This can be recast as Q = {Ap + CAE | ||A]| <1, A diagonal},
for suitable C and E. A has size d* x d°.
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Linear Differential Inclusion

Suppose we have an uncertain linear system:
g(x)=Ax, AeQ,
with Q = {Ag + CAE | ||A]| <1, A diagonal}.

Stability of an LDI

The asymptotic stability of this system with a fixed Lyapunov
function is equivalent to the feasibility of the following linear matrix
inequality (LMI) [BEGFB94]:

Find A =0 ¢ RY**d? diagonal such that:

AJS+SAy+ETAE SC
cTs A < 0.
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© Second-Order Perturbation
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Bounded-Hessians Systems

Suppose that we have:
1 - -
gk(x) = (A— BK)k.x+ EXTHk(X)X.
Then:

V(x)=2x"S$ ((A — BK)x + %(XTHk(X)x)ke{1 ,,,,, d}>

d
=x"(=Q = SBRTIBTS + > (Sk.x)H*(x))x.
k=1
A sufficient condition for V(x) < 0 is:
d -—
—Q -~ SBRIBTS +) (Skx)H*(x) < 0, ¥x #0.
k=1
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Bounded-Hessians Systems

Let M:= Q+ SBRIB'S, and
TH(x) := M~Y2HK(x)M~1/2,

If we know entrywise bounds on the rescaled Hessian T

=:=[[=F =*={TeR™|vij|Ty < UL}
k=1

Then we can extract the maximal sublevel set p:

Stability Region Estimation (bounded Hessian)

d
1
sz’ where )\ := SUP SUP Amax Z(Si./zy)Tk :
llyll2<1 Te= k=1
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Stability Certificates

Theorem (A Second-Order Stability Certificate)

B,, is a stability region for p, := 1/\2 and

d
Az 1= Amax (Z \/ Sk.S—lS,I Uk> .
k=1

Theorem (Another Second-Order Stability Certificate)

B,, is a stability region for

._ 1 e K
b= ST with D = Dlag<||U \\2).
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lterative Algorithm

Two ingredients:

e O is an oracle bounding the derivatives
of g on some region;

@ C returns a stability certificate, given a candidate
Lyapunov function S and bounds on the derivatives U.

Input: S, C(), O(), po >0, n € (0,1)
Output: A stability certificate on {x | x' Sx < p}
© Pup < PO
repeat
U< O(B,,)
p < C(57 Pup> U)
Pup <= NPup
until p > p,p
return p

N g s end
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@ Numerical Experiments
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Examples of Dynamical Systems

We consider controlled dynamical systems of
various dimensions around an equilibrium:

Trajectory

10 -

Pendulum UR-5 Robotic Arm
d=24 6 joints = dimension d = 12
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Results

TABLE 1. Radius and volume of the certified ROA for the different methods, relative to
the values obtained by sampling for reference.

Dy Cy s e S0S sampling
P/Ps v/vs P/ps v/vs p/ps v/vs p/ps v/vs P/ps | v/vs
Vanderpol 0.20 0.20 0.14 0.14 0.10 0.10 1 1 1 1
Satellite 2.9x1072 | 2.6x107° | 9.3x107% | 9.4x10™* | 7.9x1072 | 5.7x10°* 0.93 0.82 1 1
Pend. (bot.) | 3.2x102 | 1.1x1073 | 3.5x1072 | 1.2x107% | 4.2x10°2 | 1.9x103 | 1.4x102 | 2.0x10™* 1 1
Pend. (top) | 5.1x107 | 2.6x107° | 4.5x1072 | 2.0x107* | 4.7x1072 | 2.2x10°? N.A. N.A. 1 1
Robot 2.4x1073 | 1.8x1071¢ | 7.1x10% | 1.5x10°"% | 1.5x10°2 | 1.2x10°1 N.A. N.A. 1 1
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Running times

TABLE 2. CPU time (s) per iteration, except for SOS (total time).

Dynamics | 0+¢ ‘ 0+c€3 | 0+ G'z’ ‘ SOS ‘
Vanderpol 1.8x107 | 1.1x10™* | 1.6x10~* | 0.05
Satellite 1.2 0.17 0.17 32
Pend. (bot.) 2.3 15 15 132
Robot 23 32 33 N.A.
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Generalization to Trajectory Tracking

A funnel B(t) around a trajectory, obtained with C;.
R is a region of attraction around 0, and Br is the target region.
The reference trajectory is displayed with arrows.
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Extension to Trajectory Tracking
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p(t) with different certificates, around a trajectory of Vanderpol.

The total CPU time is 7s for two iterations of SOS, 1s for C1, C3
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Conclusion

A general method to compute
stability certificates, that is:

@ simple to implement;
fast to compute;
tractable in large dimensions;

applicable to non-polynomial systems;

BUT less precise than SOS based certificates.

When integrated into the LQR-trees framework, is it better to
compute:

@ a lot of low-quality certificates with this method,
@ or a few tight certificates with SOS?
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