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Motivation: Application to Robotics

Controlling a robot is challenging:

The dimensions of the system are (relatively) large
=⇒ completely solving optimal control problems is hopeless.
The dynamical system is nonlinear
=⇒ we cannot directly use linear control methods.
There are modeling uncertainties
=⇒ exact solutions are somehow useless.
Some computations are done in real-time, embedded systems
=⇒ the available computing power/time is limited.
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General Idea

Consider a continuous-state MDP (discrete-time,
discrete-control). We want to discretize it into a finite MDP
(discrete-state), e.g. to approximate the value function with value
iteration.

Problem: A naive discretization has no notion of spatial proximity,
hence we would need a very large state-discretization, not even
fitting in memory for problems of moderate dimensions.

Following the approach of [McE03, AGL08], adapted to finite
MDPs in [CB14, Bac19], we compute a max-plus linear
approximation of the value function.
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Setting

We consider a deterministic, time-homogeneous, infinite-horizon,
discounted MDP defined by:

a state space S,
an action space A,
a bounded reward function r : S ×A → [−R,R],
a dynamics ϕ.(.) : S ×A → S,
and a discount factor 0 ≤ γ < 1.

We make the following assumptions:
1 the state space S is a bounded subset of Rd (d ≥ 1);
2 the action space A is finite.
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Value Iteration

The optimal value function V ∗ : S → R corresponds to an optimal
policy π∗ : S → A maximizing the cumulative discounted reward.
The greedy policy π corresponding to a value function V is then:

π(s) ∈ argmax
a∈A

r(s, a) + γV (ϕa(s)).

The value iteration algorithm consists in computing V ∗ as the
unique fixed point of the Bellman operator T : RS → RS :

TV (s) := max
a∈A

r(s, a) + γV (ϕa(s)).

The value iteration algorithm iteratively computes the recursion
Vk+1 = TVk that converges to V ∗, with linear rate since T is
strictly contractive with factor γ < 1. But if S is a finite set, it
requires O(|A| · |S|) computations, and the storage of O(|S|)
values of Vk at each step.
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Max-Plus Linear Approximation

The max-plus semiring is defined as (R ∪ {−∞},⊕,⊗), where ⊕
represents the maximum operator, and ⊗ represents the usual sum.

Let W be a finite dictionary of functions w : S → R. The value
function can be approximated by a max-plus linear combination of
functions in W.

For α ∈ RW , we define the max-plus linear combinations:

V (s) =
⊕
w∈W

α(w)⊗ w(s) = max
w∈W

α(w) + w(s).

and we write it more compactly:

V = Wα
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Max-Plus Indicator Functions

Possible dictionaries of functions:
Smooth: w(s) = −c‖s − s0‖2

Lipschitz: w(s) = −c‖s − s0‖

Indicator: w(s) =

{
0 if s ∈ A

−∞ otherwise

Soft indicator: w(s) = −cdist(s,A)2.

Smooth or Lipschitz basis functions are used to approximate value
functions of the same regularity, controlled by c [AGL08].

Piecewise constant value functions are good candidates for a
discretization. They are used in [Bac19] to cluster similar states in
discrete MDPs.
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Max-Plus Projections

We define the following four operators:

W : RW → RS , Wα(s) := max
w∈W

α(w) + w(s)

W+ : RS → RW , W+V (w) := inf
s∈S

V (s)− w(s)

W> : RS → RW , W>V (w) := sup
s∈S

V (s) + w(s)

W>+ : RW → RS , W>+α(s) := min
w∈W

α(w)− w(s).

W+ is the residuation and acts as a pseudo-inverse:

Wα ≤ V ⇔ α ≤W+V

We also define a “dot product”:

∀z ,w ∈ RS , 〈z ,w〉 := sup
s∈S

z(s) + w(s).
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Max-Plus Projections

A function V ∈ RS can be lower- (or upper-) projected onto the
basis W:

PW(V ) = WW+V

PW(V ) = W>+W>V
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Max-Plus Properties of the Bellman Operator

The structure of the Bellman operator

T : RS → RS

TV (s) = max
a∈A

r(s, a) + γV (ϕa(s))

is naturally compatible with max-plus algebra.
It is max-plus additive and homogeneous:

T (V ⊕ V ′) = T (max{V ,V ′}) = max{TV ,TV ′} = TV ⊕ TV ′

T (c ⊗ V ) = T (c + V ) = γc + TV = c⊗γTV .

This will be helpful to reduce the computational complexity of the
subsequent approximation method. Importantly, additivity no
longer holds for stochastic MDPs.
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Projection Method

Algorithm: alternative applications of the Bellman operator and
projections onto W:

Vk+1 = WW+TVk .

Hence if Vk is represented as Wαk , then αk+1 is given by
αk+1 = W+TWαk , where the operator W+TW : RW → RW is
computed by:

αk+1(w) = inf
s∈S

max
w ′∈W

γαk(w
′) + Tw ′(s)− w(s).

This computation is a min/max problem, which is not easy to solve
in general. If S is finite, this requires to compute |S| · |W| values at
each iteration.
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Variational Method

Let’s define a second dictionary of test functions Z. The value
iteration recursion Vk+1 = TVk is replaced by a variational
formulation:

〈z ,Vk+1〉 = 〈z ,TVk〉 ∀z ∈ Z,

of which we consider the maximal solution in span(W ) [AGL08]:

Vk+1 = WW+Z>+Z>TVk .

If Vk = Wαk , we have the following recursion:

αk+1 = W+Z>+Z>TWαk .
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Variational Method

The operator W+Z>+Z>TW : RW → RW decomposes as M ◦ K ,
with K = Z>TW : RW → RZ and M = W+Z>+ : RZ → RW .
The recursion may be recast as:

βk+1(z) = Kαk(z) = sup
s∈S

z(s) + max
w∈W

γαk(w) + Tw(s)

= max
w∈W

γαk(w) + 〈z ,Tw〉

αk+1(w) = Mβk+1(w) = inf
s∈S
−w(s) + min

z∈Z
βk+1(z)− z(s)

= min
z∈Z

βk+1(z)− 〈z ,w〉.

W+Z>+Z>TW is a γ-contraction, hence the recursion will
converge with linear rate to the unique fixed point. The |Z| · |W|
values 〈z ,Tw〉 for (z ,w) ∈ Z ×W can be precomputed at a cost
that is independent of the horizon 1/(1− γ) of the MDP.
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Approximate Value Iteration for Clustering

If W = Z and the (wi )1≤i≤n are max-plus indicators, the
approximate value iteration becomes:

αk+1(w) = max
w ′∈W

〈w ,Tw ′〉+ γαk(w
′),

which we interpret as classical value iteration on the MDP formed
with the clusters (A(w))w∈W as states, and as rewards the
maximal achievable reward going from one cluster to the other:

R(w ,w ′) = 〈w ,Tw ′〉 = sup
s∈S

w(s) + Tw ′(s)

= sup
s∈A(w)

max
a∈A s.t.

ϕa(s)∈A(w ′)

r(s, a).

and R(w ,w ′) = −∞ if A(w ′) cannot be reached from A(w).
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Approximate Value Iteration for Clustering

Experiments taken from [Bac19] in a discrete MDP:

This reduced problem is appealing but hard to solve in a continuous
state space. Even finding if R(w ,w ′) is finite is a reachability
problem, whose solution is not straightforward.
We use soft indicators: w(s) = −cdist(s,A(w))2, with c � 1.
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Precomputations

Subproblems: 〈z ,w〉 is independent of the MDP and can be often
computed in closed form, and:

〈z ,Tw〉 = sup
s∈S

z(s) + Tw(s)

= sup
s∈S, a∈A

z(s) + r(s, a) + γw(ϕa(s)).

In [AGL08], 〈z ,Tw〉 is approximated using the Hamiltonian of the
control problem. For general MDPs that do not come from an
underlying continuous-time control problem, this cannot be done.
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Precomputations

〈z ,Tw〉 = sup
s∈S, a∈A

z(s) + r(s, a) + γw(ϕa(s))

〈z ,Tw〉 can be approximated by gradient ascent on

fa(s) = z(s) + r(s, a) + γw(ϕa(s))

∇fa(s) = ∇z(s) +∇r(s, a) + γJϕa(s)
>∇w(ϕa(s)).

for each a ∈ A, and then taking the maximum on a.

Seeing this problem like [AGL08] as a perturbation of 〈z ,w〉, an
efficient initialization is given by

s0 ∈ argmax
s

z(s) + w(s).

Even though it not a concave maximization problem, choosing
strongly concave basis functions z and w has a regularizing effect.
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Full Algorithm
Input: MDP, W and Z, gradient steps k, step size ξ
Output: approximate value function V

Precomputations:
1: for z ∈ Z,w ∈ W do
2: s, 〈z ,w〉 ← argmax,max

s∈S
z(s) + w(s)

3: for a ∈ A do
4: 〈z ,Tw〉 ← z(s) + r(s, a) + w(ϕa(s))
5: for i = 1 to k do
6: g ← ∇z(s) +∇r(s, a) + Jϕa(s)

>∇w(ϕa(s))
7: s ← s + ξg
8: f ← z(s) + r(s, a) + w(ϕa(s))
9: 〈z ,Tw〉 ← max{f , 〈z ,Tw〉}

Reduced value iteration:
10: α← 0
11: repeat
12: for z ∈ Z do
13: β(z)← max

w∈W
γα(w) + 〈z ,Tw〉

14: for w ∈ W do
15: α(w)← min

z∈Z
β(z)− 〈z ,w〉

16: until convergence
17: return V = Wα 21 / 34



Extension: Multi-step Bellman operator

The Bellman operator T can be replaced by T ρ for ρ ≥ 1, replacing
accordingly γ by γρ. This makes sense if one time step has a small
effect compared to the scale of the basis functions, e.g. in
clustering if one time step is not enough to cross different clusters.

This makes the computation of 〈z ,T ρw〉 more complicated, as it
requires to run |A|ρ gradient ascents. A simplification is to consider
only sequences of constant actions for ρ steps.
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Decomposition of Errors

Theorem (Approximation of the optimal value function)

Let V ∗ be the optimal value function of the MDP, V̂ = W α̂, where
α̂ is the fixed point of M ◦ K̂ , and

‖K̂ − K‖∞ := sup
z∈Z,w∈W

|K̂z,w − Kz,w |.

Then: ‖V̂ − V ∗‖∞ ≤
1

1− γ
(
‖WW+V ∗ − V ∗‖∞

+‖Z>+Z>V ∗ − V ∗‖∞ + ‖K̂ − K‖∞
)
.
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Projection Error

Proposition (Approximation properties of soft-indicators)

Let c > 0 and (A1, ...,An) a partition of S where each Ai is convex,
compact and non-empty, and let D = max

1≤i≤n
diam(Ai ).

Let W1 = {w1
1 , ...,w

1
n} and W2 = {w2

1 , ...,w
2
n} defined by:

∀i ∈ {1, ..., n}, ∀s ∈ S,

{
w1
i (s) = −c1dist(s,Ai )

w2
i (s) = −c2dist(s,Ai )

2.

If V has Lipschitz constant L and c1 ≥ L, c2 ≥
L

4D
, then

‖V −W1W
+
1 V ‖∞ ≤ LD

‖V −W2W
+
2 V ‖∞ ≤ LD +

L2

4c2
≤ 2LD.

No dependency in c in the bound, for c large enough.
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Greedy Basis Selection

From a partition (A1, ...,An) of the state space, we define a
dictionary W = Z of soft-indicators wi (.) = −cdist(.,Ai )

2.
Starting from a coarse partition, we compute the approximate value
function, and then we select one of the (Ai )1≤i≤n that we want to
refine. Then we split this cluster into new sub-clusters.

A simple splitting strategy is to subdivide it into 2d smaller
parallelepipeds, by a middle cut along each dimension. This
corresponds to building a quadtree.

Following the idea of matching pursuit, a simple heuristic is to split
the cluster with highest Bellman error |TV (s)− V (s)|.
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MDP Example with state dimension 2

Mountain MDP (d = 2)
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Approximate value function

Approximate value function obtained with the algorithm
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Results

Average performance of the three approximation methods on
Mountain as a function of the number of parameters.

To get an efficient controller, the max-plus discretization does not
need to be as sharp as the naive discretization. The adaptive
discretization gives an even sparser representation of the MDP.
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Results

On an MDP with state dimension 4:

Average performance of the three approximation methods on
Cartpole as a function of the number of parameters.
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Naïve vs max-plus discretization
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Conclusion

We adapted the approximation method of [AGL08] designed for
control systems to MDPs. It provides intuitive state-space
discretizations with a reasonable number of parameters.

Possible future directions:
generalization to Q-function approximation.
a more efficient adaptive algorithm, with some exploration
mechanism, e.g. with upper confidence bounds?
how to deal with stochastic MDPs, without becoming
computationally intractable?
how to extend to Q-learning (model-free reinforcement
learning)?
→ [Gon21] proposed a first online learning approach,
“following the philosophy of reinforcement learning: explore
the environment, receive the rewards and use this information
to improve the knowledge of the value function.”
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