

Non-parametric TD(0) for policy evaluation

Objective: given a Markov reward process, compute the value function:

$$V^*(x) = \mathbb{E}\Big[\sum_{n=0}^{+\infty} \gamma^n r(x_n) \mid x_0 = x\Big].$$

Algorithm: sample $(x_n, r(x_n), x'_n)$ from the Markov chain, and update:

$$V_n = V_{n-1} + \rho_n \left[r(x_n) + \gamma V_{n-1}(x'_n) - V_{n-1}(x_n) \right] K(x_n, \cdot),$$

where K is a positive-definite kernel associated with an RKHS \mathcal{H} .

Generalization of:

- tabular setting with $K(x, y) = \mathbf{1}_{x=y}$
- linear approximation $V(x) = \theta^{\top} \varphi(x)$ with $K(x, y) = \varphi(x)^{\top} \varphi(y)$.

Challenge: proving convergence to V^*

Existing results:

- in tabular setting, a.s. convergence to V^{st} if all states are visited often
- with linear approximation, convergence to a minimizer of the mean-squared projected Bellman error, in general different from V^* .

Proposed solution:

- use a universal kernel as approximator, i.e., such that $\,\overline{\mathcal{H}}=L^2$
- add a regularization λ if $V^* \notin \mathcal{H}$:

$$V_n = (1 - \rho_n \lambda) V_{n-1} + \rho_n \Big[r(x_n) + \gamma V_{n-1}(x'_n) - V_{n-1}(x_n) \Big] \Phi(x_n) .$$

The ODE method

1. Study the *mean-path* version of the algorithm, in *continuous-time:*

$$\frac{\mathrm{d}V_t}{\mathrm{d}t} = -\lambda V_t + \mathbb{E}\Big[\big(r(x) + \gamma V_t(x') - V_t(x)\big)\Phi(x)\Big]$$

2. Back to the stochastic, discrete-time version, choose the step size properly for convergence, according to Robbins-Monro conditions.

References

N. Tsitsiklis and B. Van Roy (1997). "An analysis of temporal-difference earning with function approximation." IEEE Transactions on Automatic Control. . Bhandari, D. Russo and R. Singal (2018). "A finite time analysis of temporal difference learning with linear function approximation." COLT

A. Dieuleveut and F. Bach (2016). "Nonparametric stochastic approximation vith large step-sizes." The Annals of Statistics

A Non-asymptotic Analysis of Non-parametric **Temporal-Difference Learning**

Eloïse Berthier, Ziad Kobeissi, Francis Bach

Exponential convergence to V_{λ}^{*}

The recursion can be written as:

$$\frac{\mathrm{d}V_t}{\mathrm{d}t} = (\gamma \Sigma_1 - \Sigma - \lambda I)V_t + \Sigma r,$$

where Σ and Σ_1 are the first two autocovariance operators:

$$\Sigma = \mathbb{E}[\Phi(x) \otimes \Phi(x)]$$
 and $\Sigma_1 = \mathbb{E}[\Phi(x) \otimes \Phi(x')].$

Key property: $\|\Sigma^{-1/2}\Sigma_1\Sigma^{-1/2}\|_{op} \le 1$ (Schur complement)

• the ODE has a unique fixed point $V_{\lambda}^* \in \mathcal{H}$ defined by:

$$(\gamma \Sigma_1 - \Sigma - \lambda I) V_{\lambda}^* + \Sigma r = 0$$

• $W(t) = ||V_t - V_{\lambda}^*||_{\mathcal{H}}^2$ is a Lyapunov function, so that:

$$\|V_t - V_\lambda^*\|_{\mathcal{H}}^2 \le \underbrace{\|V_\lambda^*\|_{\mathcal{H}}^2}_{O(1/\lambda^2)} e^{-2\lambda t}$$

Regularity assumption on V^*

Source condition: $\|\Sigma^{-\theta/2}V^*\|_{\mathcal{H}} < +\infty$ for some $\theta \in [-1, 1]$.

The parameter heta quantifies the regularity of V^* with respect to \mathcal{H} :

- \star $\theta = -1$ is equivalent to $V^* \in L^2$ (always ok if $r \in L^2$)
- \star $\theta = 0$ is equivalent to $V^* \in \mathcal{H}$ (stronger)
- ★ $\theta \in (0,1]$ and $\theta \in (-1,0)$ are respectively stronger and weaker conditions than $V^* \in \mathcal{H}$.

Convergence of $V_{\lambda}^* \xrightarrow[\lambda \to 0]{} V^*$ is faster for larger values of θ : $\|V_{\lambda}^* - V^*\|_{I^2}^2 = O(\lambda^{1+\theta}).$

Optimal choice of the regularization λ is a trade-off depending on θ :

$$\|V_t - V^*\|_{\boldsymbol{L}^2}^2 = O\left(\frac{e^{-2\lambda t}}{\lambda^2}\right) + O(\lambda^{1+\theta})$$

Convergence rates of TD learning

We consider two different settings for the sampling of the $(x_n, r(x_n), x'_n)$:

- *i.i.d.* **sampling** from the stationary distribution of the Markov chain
- successive samples from the Markov chain, with exponential mixing (requires additional boundedness assumption, see details in the paper)

- recovers existing $1/\sqrt{n}$ rate for $\theta = 0$
- the rates are adaptive to the regularity of V^* with respect to \mathcal{H} and can be slower ($\theta < 0$) or faster ($\theta > 0$) than $1/\sqrt{n}$
- for $\theta = -1$, we only prove asymptotic convergence to V^*

Numerical experiment

We use the Sobolev kernels of regularity *S* on the 1d torus.

$$|\hat{V}_0^*|^2 + \sum_{\omega \neq 0} |\omega|^{2s(1+\theta)} |\hat{V}_\omega^*|^2 < \infty$$

(decrease rate of Fourier coefficients)

The effect of the mixing parameter $1 - \varepsilon$ is in the constants, not the rate.

Predicted slope: -0.43Observed slope: -0.58