
A Non-asymptotic Analysis of Non-parametric 
Temporal-Difference Learning

Non-parametric TD(0) for policy evaluation

Objective: given a Markov reward process, compute the value function:

Algorithm: sample                           from the Markov chain, and update:

The recursion can be written as:

where       and        are the first two autocovariance operators:

 and       .

Key property:          (Schur complement)

• the ODE has a unique fixed point                defined by:

•                            is a Lyapunov function, so that:    

where      is a positive-definite kernel associated with an RKHS     .

Generalization of:
• tabular setting with    
• linear approximation                with     . 

Exponential convergence to 

Challenge: proving convergence to 

Existing results:
• in tabular setting, a.s. convergence to     if all states are visited often    
• with linear approximation, convergence to a minimizer of the 

mean-squared projected Bellman error, in general different from  .

Proposed solution:
• use a universal kernel as approximator, i.e., such that 
• add a regularization       if  :

Numerical experiment
We use the Sobolev kernels of regularity    on the 1d torus.

The source condition is equivalent to:

 (decrease rate of Fourier coefficients)
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Regularity assumption on 

The ODE method
1. Study the mean-path version of the algorithm, in continuous-time:

2. Back to the stochastic, discrete-time version, choose the step size 
properly for convergence, according to Robbins-Monro conditions.

Source condition:      for some   . 

The parameter     quantifies the regularity of     with respect to    :     
★     is equivalent to     (always ok if  )
★         is equivalent to (stronger)
★                    and                       are respectively stronger and weaker 

conditions than     .

Convergence of          is faster for larger values of     :

Optimal choice of the regularization     is a trade-off depending on    :

Convergence rates of TD learning
We consider two different settings for the sampling of the  :
• i.i.d. sampling from the stationary distribution of the Markov chain    
• successive samples from the Markov chain, with exponential mixing 

(requires additional boundedness assumption, see details in the paper)

Main theorem:

With                     , constant step size                   and exponential averaging:

• recovers existing          rate for           
• the rates are adaptive to the regularity of       with respect to     and can 

be slower (            ) or faster (            ) than 
• for               , we only prove asymptotic convergence to 

The effect of the mixing 
parameter            is in the 
constants, not the rate.

Predicted slope: 
Observed slope: 
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