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Non-parametric TD(0) for policy evaluation

Objective: given a Markov reward process, compute the value function:
+00
V¥(x) = E[Zvnr(xn) ‘ Ty = x}
n=>0
Algorithm: sample (zn, 7(zn), z,) from the Markov chain, and update:
Vn — Vn—l"‘pn [T<xn)‘|‘7vfn-1(ZE;J_Vn—l(ajn)} K(SBn, ')7

where K is a positive-definite kernel associated with an RKHS H.

Generalization of:
- tabular setting with K (x,y) =1,_,
+ linear approximation V(x) = 0 ' p(z) with K(x,7y) = ¢(z) o(y).

Challenge: proving convergence to V"

Existing results:

« in tabular setting, a.s. convergence to V" if all states are visited often

« with linear approximation, convergence to a minimizer of the
mean-squared projected Bellman error, in general different from V*

Proposed solution: L
« use a universal kernel as approximator, i.e., such that H = L2
+ add a regularization \ if V" & H.:

V, = (1= pu ) Va1 + pr [r(xn) AV () — vn_l(xn)} O(z,) .

The ODE method

1. Study the mean-path version of the algorithm, in continuous-time:

% _ —)\VHE[(r(:z:)Jrﬂ/;(x')—Vi(fC))@(I)}

2. Back to the stochastic, discrete-time version, choose the step size
properly for convergence, according to Robbins-Monro conditions.
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Exponential convergence to V)

The recursion can be written as:

%:(WZl—Z—)J)VmLZT,

where D and Zlare the first two autocovariance operators:

X =E[®(x) @ P(x)] and X1 =E[®(z) @ D(z)].

Key property: HZ—l/QZlZ—l/QHOp < 1 (Schur complement)

- the ODE has a unique fixed point Vy € H defined by:
(VX =X = AV 4+3Xr =0
.« W(t) = ||V; — Vi¥||5, is a Lyapunov function, so that:
2 2 =2\t
Vi = Vil < [IVX e
—_—
O(1/3%)

Regularity assumption on V"

Source condition: HZ_H/QV*HH < 400 forsome @ &€ [—17 1].

The parameter @ quantifies the regularity of V" with respect to H
* = —1isequivalentto VV* ¢ L? (always okif r € LQ)
* @ =0 isequivalentto V™ € H (stronger)
* 0 € (0,1] and § € (—1,0) are respectively stronger and weaker
conditions than V* € .

Convergence of V)ik — V'™ is faster for larger values of § :

A—0
[V = V7. = O,
|% > Vo
! t—+00 A
p
1
-
1
Optimal choice of the regularization A is a trade-off depending on #:
o2
[Vi = V(I3 = O(=7) + O™)
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Convergence rates of TD learning

We consider two different settings for the sampling of the (zy, r(xy,), :U;l) ,

* j.i.d. sampling from the stationary distribution of the Markov chain

« successive samples from the Markov chain, with exponential mixing
(requires additional boundedness assumption, see details in the paper)

Main theorem:

_1+0 log n
With A = n 2+0 | constant step size p = 2§n

and exponential averaging:

E[[Va—VI12.] = 0((logn)>n™57)

. recovers existing 1/+/n rate for § = ()
» the rates are adaptive to the regularity of V" * with respect to 7{ and can

be slower (§ < () orfaster (§ > () than 1/v/n
 for 0§ = —1, we only prove asymptotic convergence to V*

Numerical experiment

We use the Sobolev kernels of regularity S on the 1d torus.

—— Sobolev kernel s=1

The source condition is equivalent to: Sobolev kernel s = 2

"2 2s(1 "2 —
Vil + D w P < oo 8
w=#0

(decrease rate of Fourier coefficients)

o ¢=1

R ;8:2 The effect of the rT.1ix.ing
v “‘~~~~-1\.\.\!~.’ Ml parameter 1 — ¢ isin the
L 107 3 "*.QN constants, not the rate.
@IC | e- i | -
=ty T oter, Predicted slope: —().43

| ""‘""\ Observed slope: —().58
19—= 3
102 n 103



