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Abstract

Machine learning algorithms can leak private information contained

in particular training data. Differential privacy ensures that an algo-

rithm does not rely too strongly on any individual data point. Differ-

entially private machine learning can be achieved by injecting noise in

the training process. In particular, the privacy of DP-SGD has already

been well-studied, yet only in the case where each training example

is sampled with replacement. We focus on the more practical case of

sampling without replacement, or shuffling, and try to provide privacy

guarantees for this algorithm. We also explore possible relaxations of

differential privacy.

Keywords: differential privacy, machine learning, stochastic gradient

descent, sampling schemes.
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INTRODUCTION

Introduction

Over the past few years, data collection has increased dramatically, allowing large scale data anal-

yses, in fields as diverse as advertising, online recommendation, computer vision, natural language

processing or medicine. Some of these data are related to individuals, such as demographic data,

video surveillance, web traffic logs, geolocation, emails, health records or even genomic data. This

of course raises privacy issues, as pointed out by the recent establishment of General Data Protection

Regulation (GDPR) in the European Union. Now states and private companies are also willing to

share data, with the restriction that they do not release those that could harm their competitive edge

or the privacy of their users.

In addition to whole datasets, it is likely that trained machine learning models will become a new

trading value to be exchanged or released, for commercial or scientific purposes. This hypothesis

is plausible, especially because of the large computational and human resources required during

training, which will not be accessible to all organizations. However, it is unclear how such a model

exposes its training data, especially in the case of complex models, such as neural networks which

are still poorly understood. Recent striking experimental studies suggest that some models indeed

memorize and leak private information from some of their training data points.

Meanwhile, individual are becoming more suspicious about the way their personal data are collected

and used. That could lead them, often rightly, to withdraw from data collection processes when they

are not informed of the intentions of data collectors. It would be sensible to provide them with some

guarantee, asserting how much their privacy will be harmed by some process using their personal

data. The notion of differential privacy is one possible approach to cope with this issue. In this report,

we are particularly interested in how a machine learning model exposes its training data, that is in

the use of differential privacy for machine learning.

This has sparked some interest in the last five years, both from compute security and machine learn-

ing communities. It has led to a few privacy preserving learning algorithms, some of them with

practical implementations, others hardly applicable. However, there is a trade-off between preserv-

ing privacy and yet providing a useful algorithm. It seems that for now, the loss in utility is still

crippling as compared to the gain in privacy, which is in addition hardly interpretable. It might be

that the current definition of differential privacy is not well suited for machine learning. That is

why a significant part of the effort in this field has been focused on finding the right relaxations and

definitions of privacy. A clear consensus does not seem to have emerged yet, keeping the room open

for new propositions.
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INTRODUCTION

In this report, we first quickly present the main privacy challenges in machine learning, before defin-

ing the notion of differential privacy and its main properties. Then we move on to its applications

to learning and optimization processes, with a particular focus on the stochastic gradient descent

algorithm. This part gathers most of the work conducted during this internship. Finally, we explore

other possible notions of privacy, focusing on distributed settings.

Some parts of this report are based on existing literature, the others present explorations carried out

during the internship and can be considered as independent. These are marked with a ? in their title.
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1 MOTIVATION: ATTACKS AGAINST PRIVACY

1 Motivation: Attacks Against Privacy

Machine learning models extract knowledge from their training data. When the data are personal or

sensitive, the model could potentially reveal pieces of information that are specific to one data point.

A striking example of data leakage has been recently provided in the field of natural language pro-

cessing [6]. A neural network could memorize a random secret word inserted in its training dataset

and this word could be reconstructed from the trained model only. Similarly, an auto completion

model could possibly learn to predict a user’s password each time its username is entered. This issue

has significant implications in other fields such as medicine, census records or finance, as it spoils

opportunities to share trained models across organizations.

There are two main categories of attacks than can be performed to recover information from the

training data:

• membership attack: an adversary wants to know if a particular data point was used to train the

model;

• reconstruction attack: an adversary wants to reconstruct some training data points or some of

their features.

A membership attack is successively performed if the adversary manages to build a classifier that

predicts if a data point (rather its discretization) was used with a significant discrimination, for

instance measured by the area under the ROC curve. The reconstruction attack is harder to carry

out as it implies ability to perform membership attacks. Suppose the training process is invertible,

than it would theoretically be possible to reconstruct the dataset from the model by brute force. Yet

in general it would require an exponential number of operations. Robustness towards reconstruction

attacks should instead be quantified against an adversary with limited polynomial time computing

power.

These kinds of attacks come with two modalities:

• white-box attack: the adversary is granted access to the weights of the model;

• black-box attack: the adversary is only granted access to a possibly limited number of inference

queries to the model.

Obviously it is easier to perform the attack in the white-box setting. The black-box setting is closer

to the whole area of adversarial examples.

An intuitive way to carry a membership attack is to look at the confidence of the model. Typically,

the model will be overconfident when it runs inference on training examples. An adversary would

try to maximize the confidence of the model with respect to the input data. In the white-box setting,

one can simply do gradient ascent on the input, whereas in the black-box setting, one could use for

6



1 MOTIVATION: ATTACKS AGAINST PRIVACY

Figure 1: This situation is not too far from the results of [6] and the issue should be taken seriously
for natural language processing (xkcd comic of June 28, 2019).

instance zero-order optimization, yet requiring a higher number of queries to converge.

The authors of [6] base their attack on a measure of surprise - the log-perplexity - of the model with

respect to a sequence of inputs. They can efficiently retrieve a secret word inserted in the training

set. Yet models trained with differential privacy do not memorize the secret word, and are immune

to this attack for reasonable privacy parameters.

This is our main motivation to study differential privacy applied to the learning process. In the

following sections, we will implicitly focus on the white-box setting. Indeed, we will study the privacy

of an algorithm that takes training data as input and outputs the weights of a model.
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2 DIFFERENTIAL PRIVACY

2 Differential Privacy

The main definition of differential privacy (DP) has been stated in 2006 by Dwork et al [10]. It is

an information theoretic guarantee that applies to any algorithm using data. Consider two datasets

D and D′ that differ only by one data point. An algorithm A is differentially private if its output is

not significantly different when it is run on D or D′. The difference is measured by some statistical

distance between the two outputs. Achieving this guarantee requires to add some randomness to

the result of data queries, hence hiding potential specificities of each data point.

2.1 Definition

The following three sections are based on the extensive review of differential privacy [11]. We

consider a dataset as a collection of records from a space X . Each dataset x can be represented by

an histogram over X , that is, x ∈ N|X |. We can measure the distance between two datasets as

‖x− y‖1 :=

|X |∑
i=1

|xi − yi|

It quantifies howmany records differ between x and y. An algorithmA acts on a dataset by reading its

records and optionally auxiliary data, and returning some result. When the algorithm is randomized,

it maps the training data to a probability distribution A(x) = µ. Differential privacy quantifies how

much one particular record from the dataset can influence the output of the algorithm.

Definition 2.1 ((ε, δ) differential privacy). A randomized algorithm A is said to be (ε, δ)-differentially

private if ∀S ⊂ Im(A) and ∀x, y ∈ N|X | such that ‖x− y‖1 ≤ 1:

P[A(x) ∈ S] ≤ eεP[A(y) ∈ S] + δ

or equivalently, with A(x) = µ and A(y) = ν:

sup
S⊂Im(A)

µ(S)− eεν(S) ≤ δ

This definition is already a relaxation of the original pure ε DP, corresponding to δ = 0 and stronger

than (ε, δ) privacy with δ > 0. One of the reasons for this relaxation is that ε DP focuses on all events

with non-zero probability, even the very unlikely ones. (ε, δ) DP ignores events with probability less

than δ, and roughly means that ε DP holds with high probability 1− δ.
Small values of ε correspond to higher privacy, ε = 0 meaning that the algorithm does not use the

data at all. Of course, to achieve some utility, the algorithm will reach some ε > 0. δ should ideally

8



2 DIFFERENTIAL PRIVACY

be set as cryptographically small. In practice, one should keep it negligible with respect to the inverse

of the number of data points n. Indeed, completely releasing one data point at random satisfies (0, δ)

DP for δ = 1/n. This value of δ is hence considered dangerous.

Note that the definition requires the inequality to hold simultaneously for any two neighboring

datasets, and the roles of x and y are symmetric. Then if A returns a deterministic response that

depends on the data, µ and ν are just diracs in different locations, and (ε, δ) DP is impossible to reach

for any ε < +∞.

2.2 Privacy Techniques

A simple method to build a DP algorithm is to add some noise to the result of a query on the dataset.

More precisely, adding properly scaled Laplace noise guarantees ε DP, while adding Gaussian noise

only guarantees (ε, δ) DP. This is probably the main reason of the adoption of (ε, δ) DP, together with

better composition rules (see next section).

The art of DP lies in scaling the noise with respect to the privacy. Intuitively, adding more noise masks

more effectively the data and should increase the privacy and decrease ε. Privacy is related to a third

factor, the sensitivity of the query. It measures the maximum deviation (with respect to some norm)

of a query f when one data point is changed, or:

S(f) := sup
x,y,‖x−y‖≤1

‖f(x)− f(y)‖

Sometimes, S(f) is simple to estimate, but for complex queries like training a neural network, this

is much harder.

In dimension d ≥ 1, the noise is added independently to each component of the query. Here is a

simple relation between noise, privacy and sensitivity:

Proposition 2.1 (Laplace mechanism). Let S1(f) be the sensitivity of the query f with respect to the

`1 norm. Adding Laplace noise to the query, sampled according to Lap(S1(f)/ε), guarantees ε DP.

There is an equivalent result for Gaussian noise:

Proposition 2.2 (Gaussian mechanism). Let S2(f) be the sensitivity of the query f with respect to

the `2 norm. Let c2 > 2 log(1.25/δ) and σ ≥ cS2(f)/ε. Adding Gaussian noise to the query, sampled

according to N (0, σ2), guarantees (ε, δ) DP.

A simple example The simplest privacy technique, which is adapted to discrete output spaces, is

randomized response. Say you want to do a survey in a city to get an estimation of the number of
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2 DIFFERENTIAL PRIVACY

S2(f)

σ

f(x) f(y)

Figure 2: Masking the output of a query by the Gaussian mechanism: as more noise is added, the
outputs become indistinguishable.

drug consumers. You can ask the question directly to individuals – Are you a drug consumer? – but the

answer will obviously harm their privacy. Instead, you can propose them the following protocol. Flip

a coin, if it is heads, answer truthfully. Else flip another coin and answer yes if heads and no if tails.

By doing so, the answer has some random noise that allows the respondent to negate his answer and

pretend it was only accidental. If the number of respondents is large enough, the surveyor can still

compute a good estimate of drug consumers without compromising the privacy of each individual.

This algorithm satisfies ε = log(3) DP with balanced coins, which can be modulated by changing the

odds of the first coin.

2.3 Properties

DP is a constructive guarantee that is usually computed by using simple properties as building blocks.

The example above highlights some of its fundamental properties. Themost basic one is robustness to

post-treatment. It is not possible to further compromise the privacy of an individual just by thinking

about his answer. Another important property is composition. If two requests with DP ε1 and ε2 are

performed on the same dataset, then the composition of both has privacy ε1 + ε2. In other words,

performing several sensitive queries significantly degrades privacy. This property is intuitive: if one

repeats 100 times the survey described above on the same person, one will obtain a very reliable

estimate of his true answer. A last useful property is that of subsampling: if an individual has a

probability less than one of being included in the study, then his privacy is preserved more.

We do not state here these properties more formally, as they will be further developed in other parts

of this report. Robustness to post-treatment and basic composition are proved for an alternative

definition of DP in the next subsection, with very similar proofs as for DP. Subsampling properties

will be developed more in the next section for Rényi differential privacy.

Here we only give a glimpse of the composition property. ε DP satisfies basic composition, which

10



2 DIFFERENTIAL PRIVACY

means that if A1 has DP ε1 and A2 has DP ε2, then (A1,A2) has DP ε1 + ε2, in the worst case. This

linear scaling is quite annoying because it limits drastically the number of queries that can be done

on a dataset. However, a better sublinear composition property can be obtained for (ε, δ) DP, up to

a slight loss in δ:

Theorem 2.1 (Advanced Composition Theorem). For all ε, δ, δ′ ≥ 0, the class of (ε, δ) DP algorithms

satisfies (ε′, kδ + δ′) DP under k-fold adaptive composition for:

ε′ =
√

2k log(1/δ′)ε+ kε(eε − 1)

k-fold adaptive composition means that k algorithms can be run sequentially on the same dataset,

and we allow each of them to take as auxiliary input the outputs of the previous ones. This means

that a curious adversary could adapt his queries to the outputs he gets. We obtain a scaling in
√
k

instead of k for the basic composition, but this only applies to small values of ε. Another weakness of

this theorem is that it only allows each mechanism to compose to have the same privacy (ε, δ). It has

been later shown that finding the optimal composition theorem for general (εi, δi)1≤i≤k algorithms

is NP-hard [22].

2.4 Total Variation Differential Privacy?

2.4.1 Definition

The condition for ε DP is a divergence and cares about the ratios of the probabilities. This means

that regions where ν has a very small probability is given unduly large importance, even though they

may never happen in practice. Here we consider a relaxation of DP using total variation. We replace

the divergence with a distance measure and use total variation:

TV (µ, ν) := sup
S
|µ(S)− ν(S)| ≤ δ

This corresponds to (ε, δ) DP for ε = 0. Similarly, we must ensure that δ is very small compared to

the inverse of the size of the dataset, we require typically that δ = o(1/n).

This relaxation has been scarcely studied, the only reference being [2]. It is both a distance and an f-

divergence. It is weaker than the KL divergence, according to Pinsker’s inequality. For all probability

distributions µ, ν:

TV (µ, ν) ≤
√

1

2
KL(µ||ν)

It is a particular case of a Wasserstein distance with transport cost c(x, y) = 1x 6=y. However, it is not
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2 DIFFERENTIAL PRIVACY

obvious why other transport distances would be suitable for a definition related to indistinguishabilty,

and not to proximity in a ground space. One could have two very close Dirac distributions, which

are close with respect to theW2 distance, but still clearly distinguishable.

2.4.2 Main Properties and Techniques

We check some properties of TV privacy by adapting results from [11]. The proofs are in the ap-

pendix. For a set R, we writeM(R) for the set of probability distributions on R.

Proposition 2.3 (Immunity to post-processing). Let A : N|X | → M(R) be a randomized algorithm

that is δ TV-private. Let f :M(R)→M(R′) an arbitrary randomized mapping. Then f ◦ A : N|X | →
M(R′) is δ TV-private.

Theorem 2.2 (Composition theorem). Let A1 : N|X | →M(R1) be a δ1 TV-private algorithm, and let

A2 : N|X |×R1 →M(R2) be a δ2 TV-private algorithm. Then their adaptive composition A1,2 : N|X | →
M(R1 ×R2) by the mapping A1,2(x) = (A1(x),A2(x,A1(x))) is δ1 + δ2 TV-private.

This result holds not only when the two algorithms are run independently, but even when subsequent

computations can incorporate the outcomes of the preceding computations. We only require the

randomness created by each algorithm to be independent.

Laplace Mechanism. Recall that the `1 sensitivity of a function f : N|X | → Rd is:

∆f := S1(f) = sup
x,y∈N|X|,‖x−y‖1≤1

‖f(x)− f(y)‖1

Suppose we want to compute a query f on the dataset x. The Laplace mechanism consists in comput-

ing f(x) and then adding some properly scaled Laplace noise to the result. The Laplace distribution

is particularly well-behaved to create ε differential privacy. Here we show that it works as well with

TV-privacy, with a differently scaled noise (variance 2b2 =
∆f

δ
vs

2∆f2

ε2
for DP).

Proposition 2.4. For any function N|X | → Rd, the Laplace mechanism is defined as:

ML(x, f, δ) := f(x) + (Y1, ..., Yd)

where the Yi are iid random variables drawn from Lap(b). The Laplace mechanism with b =

√
∆f

2δ
is

δ TV-private.

12



2 DIFFERENTIAL PRIVACY

Gaussian Mechanism. We use the same principle, except that here we consider the `2 sensitivity

of functions and ∆f := S2(f). Since the KL divergence between two Gaussian distributions can be

computed exactly, one can directly upper-bound the total variation using Pinsker’s inequality:

TV (N (µ1, σ
2Id),N (µ2, σ

2Id)) ≤
√

1

2
KL(N (µ1, σ2Id)‖N (µ2, σ2Id)) =

‖µ2 − µ1‖2
2σ

We could also get more precise upper-bounds on the total variation between two Gaussian distribu-

tions using for instance the results of [9]. For the Gaussian mechanism, we bound the total variation

between N (f(x), σ2Id) and N (f(y), σ2Id) which is less than
‖f(x)− f(y)‖2

2σ
≤ ∆2f

2σ
.

Proposition 2.5. For any function N|X | → Rd, the Gaussian mechanism is defined as:

MG(x, f, δ) := f(x) + (Y1, ..., Yd)

where the Yi are iid random variables drawn from N (0, σ2). The Laplace mechanism with σ =
∆2f

2δ
is

δ TV-private.

Stronger Composition Rule. Our basic composition property is not fully satisfactory as it scales

linearly with the number of queries k. For the Gaussian mechanism, one can do better and ob-

tain a sublinear scaling in
√
k, just like the strong composition theorem for (ε, δ) privacy. We directly

upper-bound the total variation betweenmultidimensional Gaussian, which covers the adaptive com-

position of Gaussian mechanisms.

Suppose a first algorithm outputsM1(x) = f(x) +N (0, σ21Id) and a second one takes as input the

dataset and the output ofM1, and outputsM2(x) = g(x,M1(x)) +N (0, σ22Id).

We are interested in TV ((M0(x),M1(x)), (M0(y),M1(y))). The Kullback-Leibler divergence satis-

fies the chain rule:

KL(p(x, y)||q(x, y)) = KL(p(x)||q(x)) +KL(p(y|x)||q(y|x))

With Gaussian noise of size σ1 =
∆f

2δ1
and σ2 =

∆g

2δ2
, we have:


KL(M1(x)‖M1(y)) ≤ (∆f)2

2σ21
= 2δ21

KL(M2(x)‖M2(y)) ≤ (∆g)2

2σ22
= 2δ22

and then:

TV ((M1(x),M2(x)), (M1(y),M2(y))) ≤
√
δ21 + δ22

13



2 DIFFERENTIAL PRIVACY

This composition holds only for Gaussian noise, but it is more widely applicable than strong compo-

sition with (ε, δ) privacy, as we can compose steps with different privacy parameters.

2.4.3 Interpretation

Contrary to (ε, δ) and Rényi differential privacy (defined in the next section), TV privacy has only

one parameter. It has also a more intuitive interpretation in terms of hypothesis testing [2].

We first flip a coin and pick at random one of two neighboring datasets x and y. Then we run

algorithm A on the randomly chosen dataset Z, that we keep secret. Consider an adversary who

looks to the output of the algorithm. He wants to test between two hypotheses: either the dataset x

or y has been used. He is allowed to know x and y, and even to choose them in an adverse manner.

He answers ψ = 0 if he thinks x was used and ψ = 1 else. Guessing at random would result in an

expected error of 1/2. Privacy is preserved if no matter what the adversary does, he can never do

much better than random guessing.

Type I and II errors are indeed related to the total variation between the two possible outputs of the

algorithm. If A satisfies δ TV privacy, Le Cam’s inequality says that:

inf
ψ

P [ψ = 1|Z = x] + P [ψ = 0|Z = y] ≥ 1− δ

In other words, his probability of success is less than 1/2 + δ/2. In particular, this means that our

definition only makes sense for small values of δ, keeping in mind that we need δ ≤ o

(
1

n

)
to

avoid full disclosure of one random data point. (ε, δ) DP also has a similar interpretation in terms of

hypothesis testing.

While this guarantee is less stringent that the original differential privacy, it has a simpler interpre-

tation and only one parameter that could more easily be communicated to a data provider.

This adversarial setting is also interesting to incorporate relaxations or restrictions to the abilities of

the adversary. One could for instance consider an adversary with limited polynomial time computing

power, or provide him with side information.

2.5 Rényi Differential Privacy

Rényi Differential Privacy (RDP) is a notion of privacy which is in between ε DP and (ε, δ) DP. It was

introduced by [21], inspired by prior work from [1] on the moment accountant, a way to track the

privacy loss of Gaussian mechanisms. In fact, Gaussian mechanisms have a better composition rule,

that can be easily described by RDP. This notion measures the maximal statistical deviation of the

output of the algorithm in terms of Rényi divergence of order α.
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Definition 2.2 (Rényi Differential Privacy). Let α > 1, x and y two neighboring datasets, and A an

algorithm outputting probability distributions p and q on a set E when run on x and y. A is said to

have Rényi differential privacy (α, ε(α)) if:

Dα(p‖q) :=
1

α− 1
log

∫
E
p(u)αq(u)1−αdu ≤ ε(α)

For α→ 1, it gets back to KL divergence, for α→ +∞, this is ε DP.

Proposition 2.6 (RDP of the Gaussian mechanism). Let s be the sensitivity of the query f with respect

to the `2 norm. Adding Gaussian noise to the query, sampled according to N (0, σ2), guarantees RDP(
α,
αs2

2σ2

)
for all α > 1.

An important property is that RDP can be converted into (ε, δ) privacy:

Proposition 2.7 (RDP to (ε, δ) DP). If A satisfies (α, ε) RDP, it also satisfies
(
ε+

log(1/δ)

α− 1
, δ

)
DP for

any 0 < δ < 1.

The composition property is simply additive, but it is enough to get an efficient tracking of the privacy

of Gaussian mechanisms. In practice, we track the full privacy accountant (α, ε(α)) for all α > 1,

and then convert it to (ε, δ) privacy at some level δ > 0, taking:

ε = min
α>1

ε(α) +
log(1/δ)

α− 1
.
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3 APPLICATION TO MACHINE LEARNING

3 Application to Machine Learning

3.1 Learning Privately

Given a dataset D = (x1, ..., xn) ∈ Rn×r of training examples, we want to learn a model θ ∈ Rd that

minimizes some training loss measured by a function ` : Rd × Rr → R. The problem is to find:

θ∗ ∈ argmin
θ

1

n

n∑
i=1

`(θ, xi)

Now we consider the same problem, but we want in addition the model θ∗ to be differentially private.

This is a slight abuse of notation, as DP usually refers to an algorithm. Here we say that θ∗ is DP if it

was produced by a DP algorithm. The problem becomes:

θ∗ ∈ argmin
θ private

1

n

n∑
i=1

`(θ, xi)

For now, we found no way in the literature to express this constraint easily, so that the problem

could be directly solved like a constrained minimization problem. It would at least require to learn

probability distributions on θ, but it is unclear how to include the notion of worst case with respect

to the datasets. This is still an open problem today that would possibly require further relaxations

of the definition of DP.

For learning algorithms, the private data units that will be used and shared are stochastic gradients

∇`(θ, xi). Although they are not directly data points xi, they can leak almost all the information

contains by xi: e.g. for logistic regression, each stochastic gradient is a scalar times the data point.

3.2 Main Approaches

Three main methods have been proposed to solve the empirical risk minimization problem with

differential privacy. All of them introduce randomness at different steps of the optimization process:

• Objective perturbation;

• Output perturbation;

• Gradient perturbation1.

For all of these approaches, the gradients or stochastic gradients are assumed to be bounded by a

constant L:

sup
x,θ
‖∇`(θ, x)‖ ≤ L

1We will mainly consider this technique in the rest of this report, and we will sometimes call it DP-SGD.
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3 APPLICATION TO MACHINE LEARNING

L can be either computed with the parameters of the problem, or more frequently, it is ensured

by gradient clipping. This operation ensures that no gradient gets too large, hence influencing the

algorithm too much as an outlyer. Gradient clipping takes parameter L and scales down the norm of

a vector to L if it is larger:

Clip(u, L) =


u if ‖u‖ ≤ L
L

‖u‖u if ‖u‖ > L .

Gradient clipping will not be a major concern in the rest of this report, as it is known in practice not

too harm convergence, and sometimes helps as a regularizing factor.

3.2.1 Objective Perturbation

The idea is to run an standard optimization algorithm on a modified objective function [7]. Some

properly scaled random noise is added to the objective in the form of an affine function of the pa-

rameter:

θ∗ ∈ argmin
θ

1

n

n∑
i=1

`(θ, xi) + η>θ, for η ∼ Lap(b)

This method has the advantage of being applicable to any optimization method, potentially first or

second order methods. On the other hand, it only works for strongly convex objectives. The intuition

is that in this case, the new optimal parameter θ∗ should remain close to the non-private one.

If the problem is solved iteratively with gradient descent or SGD, this method can also be interpreted

as a gradient perturbation technique, where each gradient is perturbed with a constant noise vector

η sampled once and for all:

θt+1 = θt − γ(∇`(θt, xi(t)) + η)

The major drawback of this method is that privacy guarantees are only provided for θ∗ in the argmin

of the objective function. If the optimization process is stopped before convergence, of if one of the

intermediate iterates is released, then this comes with no privacy guarantee. For machine learning

applications, this should be a major concern, as early stopping is often used to prevent overfitting.

Overall, this method is well suited for simple strongly convex problems, with a careful tuning of the

regularization parameters.

3.2.2 Output Perturbation

The idea here is to consider the whole optimization process as a single algorithm and to add noise

directly to its output [8]. This requires to scale the noise with respect to the sensitivity of the whole
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3 APPLICATION TO MACHINE LEARNING

Figure 3: Output perturbation on a smooth, strongly convex objective. The top line represents the
algorithm run on D, the bottom one on D′. The data point differing between D and D′ is xi encoun-
tered at step i. The two processes first diverge from each other, but then the contraction mapping
brings them back close together. The noise (in blue) is only added at the last step.

procedure. This can be achieved for SGD on smooth, strongly convex objectives. Once the sensitivity

is tightly upper-bounded, it is enough to add Gaussian noise with variance σ2 =
αs2

2ε2
to the final

output to get RDP (α, ε).

The main idea is the following (see figure 3). Let µ be the strong convexity parameter, β the smooth-

ness parameter of `(., x) for any x. Let the gradient step operator be:

Gx(u) := u− γ∇`(u, x)

For any x, Gx is a contraction mapping with parameter ρ := max{|1− γµ|, |1− γβ|}:

∀u, v ‖Gx(u)−Gx(v)‖ ≤ ρ‖u− v‖

If the learning rate is taken not too large, for instance γ = 2/(µ+ β), then ρ < 1 and this is a strict

contraction. As illustrated by figure 3, two runs of the same SGD algorithm on datasets D and D′

will be first identical, until they reach the different data point at step i. Then they will move away

from each other, but by no more than 2γL:

sup
x,y
‖Gx(u)−Gy(u)‖ ≤ 2γ sup

x
‖∇`(u, x)‖ ≤ 2γL

After this step, we can use the property of contraction mapping to show that eventually the two

iterates θt and θ′t will move closer to each other. Hence the overall sensitivity of one epoch of SGD

is way less than the sensitivity of one gradient step 2γL. This is true except for the last data point

processed during the epoch. The sensitivity with respect to a change of this data point is precisely

2γL. The trick to get rid of this dependency on the order of processing is to shuffle the dataset at
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3 APPLICATION TO MACHINE LEARNING

the beginning. Then the overall privacy can be computed as a softmax average of the privacies with

respect to each of the n! possible orderings, thanks to the following lemma [8]:

Lemma 3.1 (Softmax averaging of Rényi divergences). Let Hα(p, q) := exp((α − 1)Dα(p, q)). Let

M1, ...,Mm be mechanisms and q = [q1, ..., qm] be a probability vector over {1, ...,m}. LetM be an

algorithm that on input D, samples i ∼ q and returnsMi(D). Then:

Hα(M(D),M(D′)) ≤
m∑
j=1

qjHα(Mj(D),Mj(D
′))

3.2.3 Gradient Perturbation

The third method applies to SGD. The idea is to add Gaussian noise to each stochastic gradient used

in the algorithm. Each step is now:

θt+1 = θt − γ
(
∇`(θt, xi(t)) + ηt

)
with ηt ∼ N (0, σ2Id). This is different from objective perturbation since all the ηt are sampled

independently instead of being identical.

This process of adding noise to the gradients is sometimes signaled as related to the stochastic gra-

dient Langevin dynamics [31], however for reasonable privacy parameters, the noise to add for SGD

with DP has a much larger scaling, typically of the order of magnitude of L, the maximal norm of

the gradients.

There are different ways to compute the privacy of SGD with gradient perturbation, depending on

the assumptions on the objective function. The first one applies only to smooth, convex objective

functions and relies on similar contraction arguments [13]. When the objective function is β-smooth

and convex but not strongly convex, one can only show that the gradient step operator Gx is non

expansive for γ ≤ 2/β:

∀u, v ‖Gx(u)−Gx(v)‖ ≤ ‖u− v‖

Non expansiveness is not enough to get the contraction phenomenon as in figure 3. The phenomenon

is described in figure 4. The analysis of [13] relies on finer arguments that study how the added noise

is carried through the iterations, a phenomenon they call amplification by iteration. Instead of looking

directly at Rényi divergences, they track the behavior of a noise potential quantified by the shifted

Rényi divergence:

D(z)
α (µ‖ν) := inf

µ′ s.t. W∞(µ,µ′)≤z
Dα(µ′‖ν)

where W∞ is the ∞-Wasserstein distance, where W∞(µ, µ′) ≤ z if and only if there exists random
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3 APPLICATION TO MACHINE LEARNING

Figure 4: Gradient perturbation on a smooth, strongly convex objective. The two processes first
diverge from each other, then the non expansive mapping ensures that they don’t move further away
from each other. The noise (in blue) is added at each step. It is transported through the iterations
in the form of a potential that grows with the iterations, and is finally large enough to make the last
iterates indistinguishable.

variables (U, V ) such that U ∼ µ, V ∼ µ′ and P [‖U − V ‖ ≤ z] = 1.

The shifted Rényi divergence between the successive iterates stores the noise added at each steps and

takes into account the effect of the diverging i-th step. It can be converted back to a proper Rényi

divergence at the last step by picking z = 0. Once again, the obtained privacy guarantee depends

on the ordering of the data points, and the last to be processed has weaker privacy. Lemma 3.1

is then not enough to find meaningful privacy guarantees when the dataset is shuffled. Assuming

that σ ≥ L
√

2(α− 1)α (high noise regime), an asymptotically stronger version of the lemma can be

used an gives privacy guarantees which are similar to the strongly convex case, up to constants and

logarithmic factors.

When the training examples at each gradient step are sampled independently at random, similar pri-

vacy guarantees can be obtained without any smoothness or convexity assumption on the objective

function. The proof uses only simple arguments and relies on composition and subsampling proper-

ties. It was originally derived by [1], who developed a set of techniques called moment accountant,

which later motivated the introduction of Rényi differential privacy by [21].

The sketch of the privacy analysis is the following (see figure 5). Each gradient step is considered

independently and the RDP composition theorem says that the RDP on one epoch of SGD (n gradient

steps) is n times the RDP of one step. The sensitivity of each step is upper-bounded by 2γL. The

obtained privacy can in fact be amplified by a factor 1/n2 using the fact that each SGD step only
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3 APPLICATION TO MACHINE LEARNING

Figure 5: Gradient perturbation on any objective, with uniform sampling of stochastic gradients. The
privacy of each gradient step is analyzed independently. Each step is a subsampled mechanism with
subsampling parameter ρ = 1/n, yielding an amplification of RDP with factor ρ2 = 1/n2. The overall
RDP after one epoch is the sum of the RDP of each of the n steps.

uses one stochastic gradients among the n possible ones. This phenomenon is called amplification by

subsampling and has been precisely (and non-asymptotically) described by [30], with the following

result:

Theorem 3.2 (RDP amplification by subsampling). Suppose that A is (α, ε(α))-RDP for any integer

α when run on data D. Let Sub be the algorithm that takes D as input and returns one data point of

D sampled uniformly at random. Let 0 < ρ < 1 be the subsampling parameter. Then the procedure

A ◦ Sub is (α, ε](α))-RDP with:

ε](α) ≤ 1

α− 1
log

1 + 4ρ2
(
α

2

)
(eε(2) − 1) + 2

α∑
j=3

ρj
(
α

j

)
e(j−1)ε(j)

 .

In our case ρ = 1/n. For σ2 large enough (high noise regime), 4(eε(2) − 1) ≤ 8/σ2 and we get an

asymptotic scaling (when n→∞) in O
(
n× 1

n2σ2

)
= O

(
1

nσ2

)
.

Since it does not assume any properties on the objective function, this is probably the most widely

used privacy analysis and it is the one currently implemented in TensorFlow [24].

3.2.4 Comparison of Privacy Guarantees

Most of the effort in the field of differentially private machine learning is focused on how to scale

the injected noise to achieve some level of privacy. For a fair comparison, we consider a standard

setting of one epoch of SGD with batch size one, that is n stochastic gradient steps. Following [29],
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3 APPLICATION TO MACHINE LEARNING

method assumptions Excess loss for (ε, δ) DP

objective perturbation strong convexity O

(
d

n2ε2

)
output perturbation shuffling, strong convexity O

(
d

n2ε2

)
gradient perturbation shuffling, convexity O

(√
d

nε2

)

gradient perturbation subsampling O

(√
d

nε

)

Table 1: Asymptotic excess loss for (ε, δ) private algorithms, ignoring logarithmic dependencies in δ.

it is possible to convert the added noise into an excess population loss:

E[L(θprivate, D)]−min
θ
L(θ,D).

We give a glimpse of the relation between privacy ε and utility (excess loss) in table 1. A more

systematic comparison of the different available methods can be found in [29].

3.3 Smooth Objective with Shuffling?

Here we are interested in extending the results of [13] to the smooth, non-convex setting. Only the

last iterate is released (when using composition theorems, all of them are released). We sample the

stochastic gradients in some permuted ordering. This does not allow a direct use of classical results

on privacy amplification by subsampling. The idea is to study the evolution of the shifted version

of Rényi divergence during SGD, to get at the end an upper-bound on the RDP. We aim at results

matching those from [1].

The main idea is based on the fact that for smooth, non-convex objectives, the gradient step operator

is C-lipschitz for C = 1 + γβ. If the (constant) learning rate is small enough, then we can still upper

bound the deviation between the iterates on D and D′ (see figure 6). The amplification of Gaussian

noise on the iterates is not modified in the non-convex case.

3.3.1 Adaptation of Known Results

We have to adapt some of the results from [13]. This first lemma that quantifies the effect of adding

noise (with a convolution) is not modified:

Lemma 3.3 (shift reduction lemma 20 [13]). Let µ, ν and ζ be distributions over a Banach space.

Then for any a ≥ 0:

D(z)
α (µ ∗ ζ‖ν ∗ ζ) ≤ D(z+a)

α (µ‖ν) +Rα(ζ, a)
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Figure 6: Gradient perturbation on a smooth, non-convex objective. The gradient step operator is
still Lipschitz, and if the learning rate is small enough, the Lipschitz constant stays close to one.

In the case of Gaussian noise ζ = N (0, σ2Id), we have:

Rα(ζ, a) =
αa2

2σ2

The following lemma must be modified, since the gradient step is no longer a contraction (the proof

is straightforward):

Lemma 3.4 (lemma 21 [13] smooth + non convex). Suppose ψ and ψ′ are such that sup
x
‖ψ(x) −

ψ′(x)‖ ≤ s, and that ψ (or ψ′) is C-lipschitz, then for any random variables X and X ′:

D(Cz+s)
α (ψ(X)||ψ′(X ′)) ≤ D(z)

α (X||X ′)

In our case, a stochastic gradient step is ψ(u) := u− γ∇`(u, xi), it is C = 1 + γβ Lipschitz as soon as

the loss is β-smooth. Then we must change the main theorem (theorem 22) to fit with our setting.

Theorem 3.5 (theorem 22 [13] smooth + non convex). Let Xn and X ′n be the output of one epoch

of noisy SGD with datasets D and D′, and noise distributions ζ1, ..., ζn. Let s1, ..., sn be the successive

sensitivities and a1, ..., an a sequence of free parameters. Let z0 = 0 and ∀t, zt+1 = Czt + st+1 − at+1

such that ∀t, zt ≥ 0. Then

D(zn)
α (Xn||X ′n) ≤

n∑
t=1

Rα(ζt, at)
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In particular, if zn = 0

Dα(Xn||X ′n) ≤
n∑
t=1

Rα(ζt, at)

Proof. We show by recursion that

D(zt)
α (Xt||X ′t) ≤

t∑
k=1

Rα(ζk, ak)

This is true for t = 0 (z0 = 0 and same initialization). Then with Zt+1 ∼ ζt+1:

D(zt+1)
α (Xt+1||X ′t+1) = D(zt+1)

α (ψt+1(Xt) + Zt+1||ψ′t+1(X
′
t) + Zt+1)

≤ D(zt+1+at+1)
α (ψt+1(Xt)||ψ′t+1(X

′
t)) +Rα(ζt+1, at+1)

= D(Czt+st+1)
α (ψt+1(Xt)||ψ′t+1(X

′
t)) +Rα(ζt+1, at+1)

≤ D(zt)
α (Xt||X ′t) +Rα(ζt+1, at+1)

≤
t∑

k=1

Rα(ζk, ak) +Rα(ζt+1, at+1)

3.3.2 Privacy of One Epoch after Shuffling

Here we state a result similar to theorem 23 that applies in our case. This is a consequence of the

previous theorem. For one particular ordering of the samples xi, we have privacy:

Theorem 3.6 (theorem 23 [13] smooth + non convex). Consider one epoch of DP SGD where each

step is:

θt+1 = θt − γ(∇`(θt, xt) + Z)

where Z ∼ N (0, σ2Id). Then this algorithm is
(
α,

2αL2

σ2
1− C−2

1− (C−2)n−t+1

)
-RDP for its t-th data point.

In particular, the points used earlier have stronger privacy guarantees.

To combine the previous situations for t = 1, ..., n, we can use the result by [8], that we have already

reproduced as lemma 3.1. Suppose D and D′ differ only in their t-th element. We first make a

permutation. There are n! possible permutations of {1, ..., n}. Among these, the different entry is at

any index i with equal probability 1/n. Grouping them in the sum we get:

Hα(M(D),M(D′)) ≤ 1

n

n∑
t=1

Hα(Mt(D),Mt(D
′))
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The Rényi divergence is not convex, but we get this relation:

Dα(M(D)||M(D′)) ≤ 1

α− 1
log

(
1

n

n∑
t=1

exp
(
(α− 1)Dα(Mt(D)||Mt(D

′))
))

This exponentials have a softmax effect that will make the weakest privacy guarantee (when point

t is seen at the last step) dominate all the rest. Authors of [13] use instead a different version that

directly applies to Dα if σ ≥ L
√

2(α− 1)α (high noise regime) and almost gives convexity:

Dα(M(D)||M(D′)) ≤ 2

n

n∑
t=1

Dα(Mt(D)||Mt(D
′))

We still have to find a sharp upper bound on Dα(Mt(D)||Mt(D
′)) hence on:

2

n

n∑
t=1

2αL2

σ2
1− C−2

1− (C−2)n−t+1
=

4αL2

σ2n

n∑
t=1

1− C−2
1− (C−2)n−t+1

=
4αL2

σ2n

n∑
i=1

1− C−2
1− (C−2)i

.

3.3.3 Small Learning Rate Regime

Our privacy guarantee gets better as C gets closer to one, as tipped in figure 6. To recover asymptotic

rates which are similar to known results, C should go to one with n. C can only be related to

n through the constant learning rate: C = 1 + βγ and we can choose for instance γ ∼ 1

β
√
n

or

γ ∼ 1

βn
.

Proposition 3.1 (Privacy of one epoch for small learning rate).

• If the learning rate is set constant to γ ∼ 1

β
√
n
, one epoch of SGD with shuffling has an asymptotic

(when n→∞) RDP (
α,

4αL2

σ2
log(n)√

n

)
.

• If the learning rate is set constant to γ ∼ 1

βn
, one epoch of SGD with shuffling has an asymptotic RDP

(
α,

4αL2

σ2
log(n)

n

)
.

The result for γ ∼ 1/n is asymptotically similar to [13], but we are making a very strong assumption

on the learning rate. How unrealistic is it? This is quite far from Robbins and Monro’s canonical

choice of learning rate for SGD [25], but here we are looking at a very noisy version of SGD. In our

experiments (see section 4), we had to choose very small learning rates for DP-SGD, otherwise the

iterates just diverged. In a number of experiments, the learning rate we used was not too far from

1/
√
n or even 1/n. It would be also interesting to look at the case of a decreasing learning rate
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γt ∼ 1/t or γt ∼ 1/
√
t.

Still these results are not very satisfactory because they depend too strongly on the choice of the

learning rate, which is not the case for other classical analyses.

3.4 Noise Feedback with Affine Gradients?

3.4.1 Noise Feedback

One of the questions that was explored during this internship is: is there a way to (partially) cancel

the noise that is added in the gradient perturbation scheme, in such a way that it maintains both

convergence and privacy? This is inspired by recent work on gradient compression [18], that shows

that it is possible to use error feedback to fix the effect of compressing the gradients used in SGD, with

no price to pay in the convergence rates. We may see gradient perturbation as a random compression

scheme, so that we would be able to use the same results. Obviously, since we recover convergence,

we should not expect the final model to be private. We would still like to see if a reasonable trade-off

between privacy and utility can be obtained using error feedback techniques.

Instead of simple gradient perturbation, we consider the following updates:


η0 = 0

∀t ≥ 0, ηt ∼ N (0, σ2Id)

∀t ≥ 0, θt+1 = θt − γ∇`(θt, xt)− ηt+1 + ηt

The idea is simply to remove at step t the noise that was added to the previous iterate at step t− 1.

The noise added at each step is now ηt+1− ηt ∼ N (0, 2σ2). However, conditioned on θt, this noise is

not Gaussian anymore! It is not straightforward to describe its probability distribution in general as

it depends on ` and the xi.

That is why we will focus on a simple setting where it is possible to compute exactly the probability

distribution of all the iterates θt.

3.4.2 Affine Gradients

We look at the particular case where the gradient of the individual loss function with respect to the

parameters is affine. In particular this is the case of linear regression. This setting is interesting,

because when we add Gaussian noise to the gradients at each step, then the iterates have a Gaussian

distribution, hence we can explicitly compute the final DP.

We are in the setting of linear Gaussian graphical models for which inference can be performed
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θt−1 θt θt+1

Figure 7: Graphical model of the iterates of DP SGD without noise feedback.

exactly. We consider the sampling scheme of stochastic gradients to be fixed. We also consider that we

do only one pass on each data point (infinite amount of data, or one epoch). Unlike the composition

theorem that gives privacy for the whole sequence of iterates, we only look at the distribution of the

last iterate. The stochastic gradients are gt(θt) := αtθt + βt, with αt ∈ Rd×d, βt ∈ Rd and αt � 0

(SDP matrix). In the particular case of linear regression with feature vector xt and target value yt,

we would have:

gt(θt) = xtx
>
t θt − ytxt .

SGD with DP and no error feedback The first iterate θ0 ∈ Rd is fixed: θ0 ∼ N (θ0, 0). At each step

we add noise N (0,Σ) with Σ = σ2Id to the gradient. For any t, we have:

θt+1|θt ∼ N (θt − γgt(θt), σ2Id)

We can show recursively that if θt ∼ N (mt,Σt), then θt+1 ∼ N (mt+1,Σt+1) and find the relation

between successive parameters2.

Proposition 3.2 (DP-SGD on Affine Gradients). For all t ≥ 0, θt ∼ N (mt,Σt) with the following

recursion: 
m0 = θ0; Σ0 = 0

mt+1 = (Id − γαt)mt − γβt

Σt+1 = σ2Id + (Id − γαt)Σt(Id − γαt)>

For γ small enough (and ‖αt‖ bounded), all the matrices are SDP, (Id − γαt)> = (Id − γαt) so that:

Σt+1 = σ2Id + (Id − γαt)Σt(Id − γαt)

SGD with DP and error feedback Each iteration has the form:

θt+1 = θt − γ(αtθt + βt)− ηt+1 + ηt

2This is a direct application of formulas from http://user.it.uu.se/~thosc112/pubpdf/schonl2011.pdf
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θt−1

ηt−1

θt

ηt

θt+1

ηt+1

ut

Figure 8: Graphical model of the iterates of DP SGD with noise feedback.

The model is now slightly more complicated. To make the recursion work, we first consider the

random variable ut = (ηt, θt)
> and then take the marginal to keep only θt. The complete proof is in

the appendix.

Proposition 3.3 (Noise feedback SGD with Affine Gradients). Under the same assumptions, for all

t ≥ 0, θt ∼ N (mt,Σt) with the following recursion:


m0 = θ0; Σ0 = 0

mt+1 = (Id − γαt)mt − γβt

Σt+1 = 2γ2σ2α2
t + (Id − γαt)Σt(Id − γαt)

3.4.3 Effect of Noise Feedback

The mean of θt with both methods is the same: mt+1 = (Id − γαt)mt − γβt. However, the variances
differ:

ΣnoEF
t+1 = σ2Id + (Id − γαt)ΣnoEF

t (Id − γαt)

ΣEF
t+1 = 2γ2σ2α2

t + (Id − γαt)ΣEF
t (Id − γαt)

Ideally we would like to have the largest possible variance, meaning that the iterates carry more

noise, for a constant variance σ2 added to the gradients. The first resulting variance is greater than

σ2Id at all time steps, this is not true for the second one, assuming γ‖αt‖ < 1. This means that most

of the noise added at step t is in fact canceled afterwards. This was to be expected because the error

feedback technique is supposed to reduce the noise, but then this also cancels most of the privacy.

To keep the same level of privacy, one should add much more noise σ2 to the gradients with error

feedback than without.
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4 Privacy of SGD with Shuffling?

4.1 Motivation

We are interested in analyzing the effect of the order in which data is processed on privacy. Consider

one epoch of SGD with batch size one. At each step, one can independently pick uniformly at random

a new training sample. We call this method sampling with replacement. Another option is to first make

a permutation of the whole dataset, and then process all the samples according to this permuted

ordering. This secondmethod is known as sampling without replacement or as cyclic SGD or shuffling.

It has been known empirically to convergence faster [4] and is hence more widely used in practice. It

has been only recently proved [14] that sampling without replacement indeed enjoys faster conver-

gences rates for strongly convex objectives after a reasonable number of epochs: O(1/T 2) vs O(1/T )

for SGD with replacement.

While the privacy of the "sampling with replacement" method is well-known [1], it is unclear how

usual proof techniques extend to the second approach. The only existing results must assume at

least smoothness and convexity [13]. Recently, the effect of shuffling on pure ε differential privacy

has been studied [12]. However, relaxations such as (ε, δ) differential privacy or Rényi differential

privacy are more popular since they are able to obtain smaller privacy budgets.

We look at the RDP of SGD without replacement, with a particular focus on privacy guarantees that

still hold in a non-convex setting. We conjecture privacy guarantees for sampling without replace-

ment which are asymptotically similar to those for sampling with replacement, with the restriction

that each epoch is stopped part-way through the dataset has been processed.

4.2 Algorithm

Given a dataset D = (x1, ..., xn) ∈ Rr×n, we run e epochs of cyclic SGD with batch size one. Our

algorithm takes as inputs the dataset, an initial parameter θ0 ∈ Rd, a learning rate γ > 0, a loss

function ` : Rd × Rr → R and a gradient clipping parameter L > 0. Every epoch, we make a per-

mutation Si of D, then return a sequence of parameters (θ1, ..., θt) computed after t clipped gradient

steps with loss `, processing the dataset in order. At each gradient step, Gaussian noise is added to

the stochastic gradient, so that each gradient step (ignoring gradient clipping for readability) is:

θt+1 = θt − γ
(
∇θ`(θt, xs(t)) + ηt

)
with ηt ∼ N (0, σ2Id) .

Importantly, algorithm 1 only processes τ ∈ (0, 1) fraction of the shuffled data before moving on to

the next epoch—it does not perform a full cycle. The algorithm interpolates between sampling with
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Algorithm 1 Private SGD with Shuffling
1: procedure Private SGD with Shuffling(D = (xi)i=1,...,n, θ0, γ, `, L, e, τ, σ

2)
2: θ ← θ0
3: for i = 1 to e/τ do . e is the expected number of passes over each data point
4: (s1, . . . , sn)← RandomPermutation({1, . . . , n}) . Shuffle the data
5: for j = 1 to bτnc do . Each pass over the dataset is stopped part-way
6: x← xsj
7: g ← Clip(∇θ`(θ, x), L)
8: Sample η ∼ N (0, σ2Id)
9: θ ← θ − γ(g + η)

10: return θ . Return the final model or alternatively the whole sequence of {θt}

replacement (τ = 1/n) and sampling with replacement (τ = 1). We will not find any straightforward

privacy guarantee for τ = 1.

4.3 Conjecture on the Privacy

Conjecture 1 (Privacy of one step). At any epoch e and step t of Algorithm 1, let θ[1:t] = {θ1, . . . , θt}
be the outputs. There exists C ≥ 16 such that conditioned on θ[1:t] and assuming σ2 ≥ 4L2, the t+ 1-th

step satisfies (α, εt(α))-RDP for

εt(α) ≤ CαL2

(n− t+ 1)2σ2
+O

(
1

(n− t+ 1)3

)
.

The privacy bound degrades with t, and ultimately at t = n no privacy is obtained. This is the main

reason why we only process τ fraction of each epoch. The condition on σ2 corresponds to the high

noise/high privacy regime considered in [1]. If conjecture 1 holds, conjecture 2 follows and shows

how to obtain the following global privacy guarantee on our procedure.

Conjecture 2 (Global privacy). There exists C ≥ 16 such that the output sequence of parameters {θt}
given by Algorithm 1 satisfies (α, ε(α))-Rényi differential privacy for

σ2 = max

(
CeαL2

n(1− τ)ε(α)
, 4L2

)
+O

(
1

n2

)
.

Proof. We assume here that conjecture 1 holds. We mainly rely on (Proposition 1) from [21] which

states that a composition of a (α, ε1) and (α, ε2) RDP procedures is (α, ε1 + ε2)-RDP. We thus have
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that assuming σ2 ≥ 4L2, the privacy of Algorithm 1 is

ε(α) ≤
b eτ c∑
i=1

bnτc∑
j=1

{
CαL2

(n− j + 1)2σ2
+O

(
1

(n− t+ 1)3

)}

≤ CeαL2

τσ2

{∫ n

(1−τ)n

dx
x2

+O
(

1

n2

)}
≤ CeαL2

n(1− τ)σ2
+O

(
1

n2

)
.

Our conjecture recovers the same asymptotic rate as for samplingwith replacement [1]. We can easily

translate the bounds into (ε, δ) differential privacy: Algorithm 1 has privacy (ε(α) + log(1/δ)/(α −
1), δ) for any 0 < δ < 1 [21]. Tighter (ε, δ) bounds can be obtained using a privacy accountant as in

[1] that keeps track of the privacy loss at each step and uses the optimal α.

4.4 Partial Proof Overview

4.4.1 Privacy Amplification via Non-Uniform Subsampling

Here we prove a useful tool for later. Subsampling the dataset with ratio ρ = 1/n before using an

(α, ε)-RDP algorithm roughly increases its privacy to (α, ρ2ε) [30] and this is used to compute the

RDP of SGD with replacement. Suppose instead that we are subsampling with non uniform weights

(w1, ..., wn) [16]. These weights are supposed to be constant and not to depend on the processed

data. In particular, they must be the same on datasets D and D′ differing by one data point. We

assume that they can be upper bounded wi ≤ c. Then we have the following generalization of a

result from [30]:

Lemma 4.1 (Non uniform subsampling on ternary RDP). Let Sub be the algorithm that selects one

index at random in {1, ..., n} with probabilities (w1, ..., wn). We assume that ∀i, wi ≤ c. The wi cannot
depend on the dataset processed. Let amechanismM obey ζ-ternary-|χ|α-DP, then the algorithmM◦Sub
obeys cζ-ternary-|χ|α-DP.

Theorem 4.2 (Non uniform subsampling on RDP). Suppose that A is (α, ε(α))-RDP for any integer

α. Let 0 < c < 1 and (w1, ..., wn) be such that ∀i, 0 ≤ wi ≤ c, and
n∑
i=1

wi = 1. Let Sub(w1, ..., wn)

be the algorithm that takes as input a dataset with n points and returns one of the points with non

uniform probabilities (w1, ..., wn). We assume that the wi cannot depend on the dataset processed. Then

A ◦ Sub(w1, ..., wn) is (α, ε#(α))-RDP:

ε#(α) ≤ 1

α− 1
log

1 + 4c2
(
α

2

)
(eε(2) − 1) + 2

α∑
j=1

cj
(
α

j

)
e(j−1)ε(j)



31



4 PRIVACY OF SGD WITH SHUFFLING?

Proof. This is a generalization of Theorem 9 from [30] and closely follows the same proof. The only

difference being in Proposition 21 [30] (lemma 4.1 here) which states the effect of subsampling on

the ternary DP, where we need to replace 1/n by c with an inequality. The full proof of lemma 4.1 is

detailed in the appendix.

4.4.2 Separating Two Sources of Leakage

Wewill assume for simplicity that Algorithm 1 runs only for one epoch with output (θ1, ..., θk) ∈ Rk×d

for k = bτnc. Let θ[1:t] := (θ1, ..., θt) denote all the past iterates (in this epoch) until t. Conditioned

on the previous iterates θ[1:t−1], θt is a mixture of n Gaussians where each distribution corresponds to

using a particular datapoint x. In the case of uniform sampling with replacement, this mixture has

uniform weights 1/n, which allows the direct use of subsampling theorems. However in the case of

sampling without replacement, the sampling weights could possibly depend on the previous iterates

θ[1:t−1] since within an epoch each datapoint is sampled at most once.

There will be two different sources of privacy leakages:

• each iterate θt leaks information about the data point that is processed at step t;

• each iterate θt indirectly leaks information about the indices of the data points that will be

processed at the next steps.

Recall that (s1, . . . , sn) are the random variables indicating the shuffled indices. The following holds,

for any t ∈ {1, ..., n} and θ[1:t−1]:

p(θt|θ[1:t−1]) =

n∑
k=1

p(θt|θt−1, st = k)p(st = k|θ[1:t−1])

where we used the fact that θt ⊥ θ[1:t−2]|θt−1, st. Here p(θt|θt−1, st = k) is a Gaussian distri-

bution with mean θt−1 − γ∇θ`(θt−1, xk) and variance γ2σ2Id. Further, note that almost surely

p(st = k|θ[1:t−1]) ≤ 1/(n−t+1). We cannot directly use directly theorem 4.2 to bound the privacy

of θt because the subsampling weights p(st = k|θ[1:t−1]) are different between two datasets D and

D′ that differ only by one data point. If we could apply theorem 4.2, then conjecture 1 would easily

follow.

One possible idea to separate the two sources of privacy leakage is the following. We track the

evolution of a belief about the sampling weights with this random variable:

∀t ≥ 1, k ∈ {1, ..., n}, Bk
t := Pr[st = k|θ[1:t−1], B[1:t−1]]
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4 PRIVACY OF SGD WITH SHUFFLING?

We have:

p(θ1, ..., θt, B1, ..., Bt) = p(θt, Bt|θ1, B1, ..., θt−1, Bt−1)× ...× p(θ1, B1)

= p(θt|Bt, θ1, B1, ..., θt−1, Bt−1)× p(Bt|θ1, B1, ..., θt−1, Bt−1)

× ...× p(θ1|B1)× p(B1)

The composition theorem for RDP says that the overall RDP of an algorithm releasing θ1, ..., θt, B1, ..., Bt

is less than the sum of the RDPs of all the conditional algorithms. In other words, the RDP of the

terms in blue and in red can be studied separately.

We know that almost surely, Bk
t ≤ 1/(n− t+ 1). Conditioned on θ[1:t−1] and B[1:t], then θt becomes

indeed a mixture of n Gaussians, with fixed sampling weights (Bk
t )k∈{1,...,n} that do not depend on

the dataset:

p(θt|θ[1:t−1], B[1:t]) =
n∑
k=1

p(θt|θt−1, st = k)Bk
t .

Theorem 4.2 can then be applied directly to θt|θ[1:t−1], B[1:t] and gives the right amplification by

subsampling for the blue terms. Then we get for each blue term an RDP of:

εt(α) ≤ 16αL2

(n− t+ 1)2σ2
+O

(
1

(n− t+ 1)3

)
.

The remaining terms are the red ones p(Bt|θ1, B1, ..., θt−1, Bt−1). It is not straightforward to see how

to upper-bound their RDP. It somehow quantifies how much the belief about the sampling weights

can be affected when seeing a new iterate of the algorithm. We would hope to find an upper-bound

on their RDP which is asymptotically the same as the one of the blue terms: O
(

1

(n− t+ 1)2σ2

)
, so

that the overall privacy is not affected, up to constants. This, we have not achieved yet. It may also

require additional assumptions.

4.5 Shuffling can be Less Private

One might wonder why all privacy guarantees seem to be weaker for sampling without replacement

than for sampling with replacement, while both would be expected to have similar behaviors. Here

we present a toy example where DP depends on the type of sampling. θ is initialized at 0 and each

training example corresponds either to the non-convex loss function `1 or to `2 (see figure 9). The

algorithm does two SGD steps with step-size 1, then with probability p returns the final θ, otherwise

chooses a response uniformly among {−2, 0, 2} (output perturbation). With p = 1/2, sampling with

replacement has log(1.75)-DP, while sampling without replacement only has log(4)-DP.

Intuitively, the example is built such that choosing twice the same data point preserves more privacy
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θ

`(θ)

`1(θ) = sin(πθ)/π

`2(θ) = − sin(πθ)/π

−1−2 0 1 2

Figure 9: The two possible loss functions, depending on the training example.

(one cannot tell between (`1, `1) and (`2, `2)) than choosing different ones ((`1, `2) and (`2, `1) end

up in different states). This is a very simple example of randomized response where pure DP can be

computed exactly, but the same principle can be applied to SGD with gradient perturbation, albeit

with approximate computations. Besides, it does not strongly rely on non convexity and similar

examples can be built with quadratic losses. Finally, the privacy shift between the two situations is

not related to the disclosure of the full sequence of iterates.

4.6 Experiments

SGD without replacement is known to converge faster than SGD with replacement, on strongly con-

vex objectives. This is well established, both empirically and now theoretically. However, this is true

only in a non-private setting. We would like to check empirically if this still holds with DP-SGD,

where the added noise has the same magnitude as the stochastic gradients: σ ≥ 2L, where L is the

gradient clipping parameter.

4.6.1 Setting

We consider a simple two-class classification task on the dataset epsilon from libsvm3. For prac-

tical reasons, we only use the first n = 1, 000 data points (xi, yi) of the dataset (out of 400k). The

dimension of the features xi is d = 2, 000.

We use a logistic regression, with an `2 regularization to ensure strong convexity. The minimization

problem is:

min
θ
− 1

n

n∑
i=1

{
yi log(σ(θ>xi)) + (1− yi) log(σ(−θ>xi))

}
+

1

n
‖θ‖2

We solve this problem with SGD, successively without and with gradient perturbation. Using the

parameters of algorithm 1, we consider different values of τ ∈ (0, 1]. We track the training loss

depending on the number of training iterations, and more precisely the suboptimality compared to

the minimal loss obtained by SGD run on 10 times more epochs. Each experiment is repeated 10

times and the plots show the mean ± one standard deviation.
3available here: https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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Figure 10: Training loss of non-private SGD for different τ (log-log scale).

For DP-SGD, the privacy is tracked with the privacy accountant defined in conjecture 1, using the

most optimistic version (C = 16). For sampling with replacement, corresponding to τ = 1/n, this

is exactly the same accountant as the one proved by [1]. We don’t use τ = 1 for DP-SGD as we

have no efficient method to account for the privacy. The final privacy result is given in term of (ε, δ)

differential privacy, for δ = 10−4 � 1/n = 10−3.

4.6.2 Results

For non-private SGD (see figure 10), there is indeed a different between values of τ . After a reason-

able number of epochs, sampling without replacement (τ = 1) is one order of magnitude better than

sampling with replacement (τ = 1/n). This is similar to the experiment of [4] on the larger dataset

rcv1. The training losses for intermediary values of τ interpolate between the two.

For DP-SGD, we see no difference of loss between values of τ (see figure 11). Note that the scale

of the loss is very different in this experiment, and the suboptimality is not very different from at

initialization (taken constant to θ0 = 0 across all experiments). This is because the learning rate must

be chosen very small, otherwise the loss quickly diverges. In a limited number of epochs, very little

progress can be achieved in terms of loss. Importantly, the privacy guarantees are independent from

the learning rate, hence we suggest to pick the largest possible learning rate avoiding divergence.

On this classification task, after 50 epochs the non private models achieved more than 95% training

accuracy, vs around 60% for the private ones.

The privacy loss is accounted on figure 12. The dotted line corresponds to an already known accoun-
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Figure 11: Training loss of DP-SGD for different τ .

Figure 12: Privacy ε at δ = 10−4 of DP-SGD for different τ , using conjecture 1.
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tant, the other two should be considered only conjectures. If conjecture 1 holds, then they are only a

constant factor away (1/(1− τ)). It should be noticed that ε roughly grows linearly with the number

of epochs, forbidding the use of too many epochs for DP-SGD. This is a very intrinsic limitation that

prevents from going to optimality while preserving privacy.

4.6.3 Discussion

How come we do not see any difference between sampling with and without replacement for DP-

SGD?

A first possible explanation would be that the choice of the learning rate imposes a learning regime

which is too far from convergence. If we repeat the same experiment, for non-private SGD with

learning rates similar to DP-SGD, then we do not see either any difference between the two sampling

methods. It may be possible to detect a difference after a much larger number of epochs e, but

unfortunately this is not possible if we want to keep meaningful privacy guarantees since ε grows

linearly with e.

Another explanation could be the following. Intuitively, SGD without replacement works better on

strongly convex objectives because one epoch approximates a full gradient step. For DP-SGD with

replacement, at each epoch some new noise is added to the stochastic gradient of the same data

point. It suggests that several consecutive epochs cannot be considered as full gradient steps on the

same dataset. Imagine the step size is 0. Then without noise, the sum of stochastic gradients after

one epoch correspond exactly to the full gradient, and this will be the same after several epochs.

For DP-SGD with step size 0, after one epoch the sum of the gradients is a noisy version of the full

gradient, and at the next epoch it will be different noisy version, as if it was computed on a different

dataset.

With DP-SGD we are in fact solving the following problem with stochastic optimization:

min
θ

Eη∼N (0,σ2)
i∼U(1,...,n)

[
`(θ, xi) + θ>η

]

At each step, η and i are sampled according to their probability distributions and one step is per-

formed with stochastic gradient gt := ∇`(θ, xi) + η. In this case, the objective function is no longer

a finite sum, and distinguishing sampling with or without replacement does not make sense.
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5 Beyond Differential Privacy

5.1 Is it ok to Relax?

Several DP techniques now match the lower bounds on machine learning problems. Yet practical

results are still very unsatisfactory:

• either DP causes a big drop in accuracy: from 95% to 65% on CIFAR-10 after careful hyperpa-

rameter tuning [1];

• either the privacy guarantees become meaningless: ε = 10 means that there is a ratio of e10

between the probability densities of the output under D and D′.
In fact, even the initial relaxation from ε to (ε, δ) DP has been criticized for providing weaker privacy

guarantees, and certainly less interpretable ones. The exact effect of ε and δ is not simple to explain,

since it essentially focuses in worst-case analyses. Most of the provided upper-bounds are probably

far from what happens in real-life applications.

Recently, Apple has been accused of pretending to use DP while the (non-disclosed) privacy param-

eters they were using were in fact huge (ε � 10) [28]. From the point of view of the user, being

ensured ε = 10 DP or no DP at all is not very different. This is supported by practical experiments

showing that membership attacks can still be performed successfully on DP model, if the privacy

parameters are too large [17]. Obviously the original notion of DP was meant to be used with a

small privacy parameter ε.

5.2 Relation with Stability

In machine learning, the definition of uniform stability is quite close to the one of differential privacy:

Definition 5.1 (Uniform stability). A randomized algorithm A is ε-uniformly stable if for all datasets

D, D′ that differ in at most one example, we have:

sup
z

EA
[
`(A(D), z)− `(A(D′), z)

]
≤ ε .

This closely corresponds to DP applied to the loss function z 7→ `(θ∗, z) (black-box model). The only

difference is that the statistical deviation is measured by an expectation over the randomness of A.
This is not a worst-case analysis. The definition was introduced by Bousquet & Elisseeff [5] and is

used to provide in expectation generalization guarantees (see theorem 2.2 in [15]). If an algorithm

is ε-uniformly stable, then its generalization error is smaller than ε.

ε-differential privacy implies ε-uniform stability. The converse is not true. It could be interesting to

consider ε-uniform stability as a weak privacy guarantee, since it matches the intuition that a private
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model should not overfit and generalize well. This weak guarantee has a better behavior than DP in

some cases and can be ensured for instance by limiting the number of passes over the data (train

faster, generalize better [15]). Such analyses are very similar to the ones for DP, e.g. [8]. Importantly,

stability guarantees can be achieved without noise addition. However it is unclear if uniform stability

is a useful protection against membership or reconstruction attacks. Yet ε-uniform stability with a

small ε could still be better than ε-DP with a large ε.

5.3 Robustness to Attacks

Perhaps the most important weakness of DP is that it is impossible to measure in practice. Given a

model, and without access to how it was built from a dataset, it is not possible to estimate its DP. It

is only a constructive guarantee that is built from the training algorithm A : D 7→ θ∗. Depending on

the threat model, it might be difficult to assert that a malicious training algorithm indeed follows a

DP protocol.

A more practical notion of privacy could be robustness to somemembership or reconstruction attacks.

There is a line of research looking at how to measure robustness towards specific attacks and how

to develop counter measures [23]. This enables to consider more realistic adversarial setting, e.g.

when the adversary has a limited computing power, or a limited access to inference queries from the

model. Of course, these are much weaker privacy guarantees as they only depend on specific attack

schemes, as compared to DP which is an information theoretic guarantee.

5.4 Poor Man’s Privacy in Distributed Settings∗

In some cases, we do not care so much about the privacy leakage caused by the final trained model

because it will not be publicly release, or because this is too constraining. We could nonetheless

require that the training procedure should not reveal more than what the final model reveals. We call

this notion the poor man’s privacy.

This could prove useful in distributed settings, where the training data are spread over different

nodes. The nodes agree to jointly train a model, but they do not want their data to be revealed

to the other nodes or to a central authority. This corresponds to federated learning [20, 27] or

decentralized optimization [19], where the data stay on device.

Ensuring privacy in such contexts is part of the broader framework of securemulti-party computation,

which can be achieved with cryptographic methods. One of them is fully homomorphic encryption

[3] that enables simple computations on encrypted data, but it is excessively slow on large-scale

problems.
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x1

x2

x3

x4

x5

5∑
i=1

xi

Figure 13: Each node holds a data point xi. They collaborate to compute the sum without revealing
their individual data.

It could be interesting to describe lighter methods inspired by DP and based on the addition of noise.

Consider the following problem. n ≥ 3 nodes, each one holding a data point xi ∈ Rd, want to

collaborate to compute the sum S. All of them have access to the final result S, but each node

should learn no more than this about the data of the other nodes (see figure 13). We assume that

no collusion is possible between the nodes. They must share their value and compute the result in

a private way, which can be achieved by addition and subtraction of arbitrarily large noise. If the

network’s topology is a ring, techniques like the ring all-reduce algorithm [26] can be extended to

this private setting. Such an algorithm ensures both communication efficiency and privacy. Future

research directions include the extension of such algorithms to arbitrary topologies and to iterative

algorithms, the computation of the sum being applied to recover a full gradient from stochastic

gradients.
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Conclusion

We have explored the use of differential privacy for privacy preserving machine learning. It is a

relatively recent field which has made rapid progress over the last five years. In particular, the

analysis of differentially private SGD has focused a lot of attention. Yet the analysis of DP-SGD with

sampling without replacement is still an open problem. We only provide a conjecture about the

privacy guarantees that could be foreseen. Our experiments show that one should not expect huge

improvements in terms of convergence speed compared to sampling with replacement, in private

settings.

Although the mechanisms to create differential privacy are now well-understood, it unclear if it

is the right notion for machine learning. In particular, the intuitive relation between privacy and

overfitting is still not obvious, and privacy has not yet been fully included in optimization processes,

e.g. in the form of a constraint. This could possibly be achieved with weaker privacy guarantees, yet

more adapted to learning procedures. Important applications of privacy include distributed machine

learning. This is not fully covered by differential privacy and paves the way to new privacy definitions

and new private protocols. One should not fear to use relaxed privacy guarantees, as soon as they

are well-understood.
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A MISSING PROOFS

A Missing Proofs

A.1 Proof of Proposition 2.3

Proof. We first consider a deterministic function f . Let x, y ∈ N|X | such that ‖x−y‖1 ≤ 1 and S ⊂ R′:

∣∣P[f(A(x)) ∈ S]− P[f(A(y)) ∈ S]
∣∣ =

∣∣P[A(x) ∈ f−1(S)]− P[A(y) ∈ f−1(S)]
∣∣ ≤ δ

because f−1(S) ⊂ R and A is δ TV-private.

When f is a random variable over some space of functions, then we have:

P[f(A(x) ∈ S] = E
[
P[f(A(x) ∈ S | f ]

]
Hence:

∣∣P[f(A(x)) ∈ S]− P[f(A(y)) ∈ S]
∣∣ =

∣∣E[P[f(A(x)) ∈ S | f ]
]
− E

[
P[f(A(y)) ∈ S | f ]

]∣∣
=
∣∣E[P[f(A(x)) ∈ S | f ]− P[f(A(y)) ∈ S | f ]

]∣∣
≤ E

[∣∣P[f(A(x)) ∈ S | f ]− P[f(A(y)) ∈ S | f ]
∣∣]

≤ δ

where we have used Jensen’s inequality and the result for a deterministic function.

A.2 Proof of Theorem 2.2

Proof. We first make the proof when the algorithms are run independently. Let x, y ∈ N|X | such that

‖x− y‖ ≤ 1. Let (S1, S2) ⊂ R1 ×R2. Then:

∣∣P[A1,2(x) ∈ (S1, S2)]− P[A1,2(y) ∈ (S1, S2)]
∣∣

=
∣∣P[A1(x) ∈ S1]P[A2(x) ∈ S2]− P[A1(y) ∈ S1]P[A2(y) ∈ S2]

∣∣
=
∣∣P[A1(x) ∈ S1]

(
P[A2(x) ∈ S2]− P[A2(y) ∈ S2]

)
+
(
P[A1(x) ∈ S1]− P[A1(y) ∈ S1]

)
P[A2(y) ∈ S2]

∣∣
≤
∣∣P[A1(x) ∈ S1]

(
P[A2(x) ∈ S2]− P[A2(y) ∈ S2]

)∣∣
+
∣∣(P[A1(x) ∈ S1]− P[A1(y) ∈ S1]

)
P[A2(y) ∈ S2]

∣∣
≤ 1× δ2 + δ1 × 1

= δ1 + δ2
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When the algorithms are run sequentially and each algorithm takes as input the outputs of previous

algorithms, the proof remains valid. We just have to use:

P[A1,2(x) ∈ (ds1, S2)] = P[A2(x,A1(x)) ∈ S2 | A1(x) ∈ ds1] P[A1(x) ∈ ds1]

A.3 Proof of Proposition 2.4

Proof. We first consider the case d = 1. Let x ∈ N|X | and y ∈ N|X | with ‖x− y‖1 ≤ 1. Let px and py

be the probability densities of respectivelyML(x, f, δ) andML(y, f, δ). For any z ∈ R:

|px(z)− py(z)| =
1

2b

∣∣∣ exp
(
− |f(x)− z|

b

)
− exp

(
− |f(y)− z|

b

)∣∣∣
Since u 7→ e−u is 1-Lipschitz on R+, we have:

|px(z)− py(z)| ≤
1

2b

∣∣∣ |f(x)− z|
b

− |f(y)− z|
b

∣∣∣
≤ 1

2b2

∣∣∣|f(x)− z| − |f(y)− z|
∣∣∣

≤ 1

2b2
|f(x)− f(y)| ≤ δ

Now for dimension d ≥ 2. We use a recursion. Suppose for all d′ < d and z ∈ Rd
′
, we have

|px(z)− py(z)| ≤
1

2b2
‖f(x)− f(y)‖Rd′ . Let z ∈ Rd. Since the Yi are independent,

px(z) =

d∏
i=1

exp
(
− |f(x)i − zi|

b

)

so we can move exp
(
− |f(x)d − zd|

b

)
out and we get:

|px(z)− py(z)| =
1

2b

∣∣∣ d∏
i=1

exp
(
− |f(x)i − zi|

b

)
−

d∏
i=1

exp
(
− |f(y)i − zi|

b

)∣∣∣
=

1

2b

∣∣∣ exp
(
− |f(x)d − zd|

b

) d−1∏
i=1

exp
(
− |f(x)i − zi|

b

)
− exp

(
− |f(y)d − zd|

b

) d−1∏
i=1

exp
(
− |f(y)i − zi|

b

)∣∣∣
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Using the same technique as in the proof of theorem 2.2, we get:

|px(z)− py(z)| ≤
1

2b

∣∣∣ exp
(−|f(x)d − zd|

b

)( d−1∏
i=1

exp
(−|f(x)i − zi|

b

)
−
d−1∏
i=1

exp
(−|f(y)i − zi|

b

))∣∣∣
+

1

2b

∣∣∣( exp
(−|f(x)d − zd|

b

)
− exp

(−|f(y)d − zd|
b

)) d−1∏
i=1

exp
(−|f(y)i − zi|

b

)∣∣∣
Using the hypothesis in dimension 1 and d− 1, we get:

|px(z)− py(z)| ≤ 1× 1

2b2
‖f(x)− f(y)‖Rd−1 +

1

2b2
|f(x)d − f(y)d| × 1

=
1

2b2
‖f(x)− f(y)‖Rd ≤ ∆f

2b2
≤ δ

where ‖f(x) − f(y)‖Rd−1 means that we only consider the first d − 1 components of f(x) − f(y).

We have proved that the Laplace mechanism in any dimension d, with parameter b =

√
∆f

2δ
is δ

TV-private.

A.4 Proof of Theorem 3.6

Proof. The proof outline is the same as for the original theorem. Let S = (x1, ..., xn) and S′ =

(x1, ..., xt−1, x
′
t, xt+1, ..., xn) two datasets that differ only at entry t. The ζk are all noise distributions

N (0, (γσ)2Id). Hence Rα(ζk, a) =
αa2

2σ2γ2
. We have (bounded gradients):

sup
θ
‖gt(θ)− g′t(θ)‖ = γ sup

θ
‖∇`(θ, xt)−∇`(θ, x′t)‖ ≤ 2γL

Now ∀i 6= t, si = 0 and st = 2γL = s.

Parameters ai and zi can be chosen freely, provided z0 = zn = 0 and ∀k, zk ≥ 0. We aim at solutions

with minimal Rényi divergence, hence with minimal
∑
i

a2i .

To ensure the constraints, we must have a1 = ... = at−1 = 0 and z0 = z1 = ... = zt−1 = 0. After that,

zt = s− at, zt+1 = C(s− at)− at+1, zt+2 = C2s− C2at − Cat+1 − at+2...

At final time step n:

zn = Cn−ts− Cn−tat − Cn−t−1at+1 − ...− Can−1 − an

Since we want zn = 0, then

Cn−ts = Cn−tat + Cn−t−1at+1 + ...+ Can−1 + an
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or equivalently:

s = at + C−1at+1 + ...+ Ct−n+1an−1 + Ct−nan

Minimizing
∑
i

a2i becomes an easy QP problem in dimension n− t+ 1.

Writing bi := at−1+i for i = 1, ..., n − t + 1, then b ∈ Rn−t+1.
n∑
i=1

a2i =
∑

j = 1n−t+1b2j . The con-

straint is µ>b = s with µ = (1, C−1, ..., Ct−n+1, Ct−n)>.

We want to solve:

min
b: µ>b=s

‖b‖2

This is equivalent to

max
λ

min
b
‖b‖2 − λµ>b+ λs

Then b =
1

2
λµ and λ =

2s

‖µ‖2 , hence b =
s

‖µ‖2µ and ‖a‖2 = ‖b‖2 =
s2

‖µ‖2 =
4γ2L2

‖µ‖2 .

Then

Dα(Xn||X ′n) ≤
n∑
k=1

Rα(ζk, ak)

=
n∑
k=1

αa2k
2σ2γ2

=
α

2σ2γ2

n∑
k=1

a2k

=
2αL2

σ2‖µ‖2 .

We still have to compute ‖µ‖2 =

n−t∑
i=0

(C−2)i =
1− (C−2)n−t+1

1− C−2 .

We finally get:

Dα(Xn||X ′n) ≤ 2αL2

σ2
1− C−2

1− (C−2)n−t+1
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A.5 Proof of Proposition 3.1

Proof. γ ∼ 1√
n
is such that C−2 = 1− 1√

n
. In this case we seek an upper bound on:

1

n
√
n

n∑
i=1

1

1− (1− 1√
n

)i

Using Taylor with Cauchy remainder on u 7→ (1 + u)α for α ≥ 1, we get:

∀ − 1 < u ≤ 0, (1 + u)α ≤ 1 + αu+
α(α− 1)

2
u2

In our case: (
1− 1√

n

)k
≤ 1− k√

n
+
k(k + 1)

2n

hence

1−
(

1− 1√
n

)k
≥ k√

n
− k(k + 1)

2n

Now we look at two different cases:

• when k ≤ 2
√
n− 2 we take the invert of the previous lower bound

• when k ≥ 2
√
n− 1 we can do a direct upper bound

In the first case, 1−
(

1− 1√
n

)k
≥ k√

n
− k(k + 1)

2n
≥ 0 and so

1

1− (1− 1√
n

)k
≤
(
k√
n
− k(k + 1)

2n

)−1
=

√
n

k

(
1− k + 1

2
√
n

)−1

Since k ≤ 2
√
n− 2,

k + 1

2
√
n
≤ 1− 1

2
√
n
, hence 1− k + 1

2
√
n
≥ 1

2
√
n
> 0 and

(
1− k + 1

2
√
n

)−1
≤ 2
√
n

and finally
1

1− (1− 1√
n

)k
≤ 2n

k

In the second case, k ≥ 2
√
n− 1 , we can directly upper bound:

1

1− (1− 1√
n

)k
≤ 1

1− (1− 1√
n

)2
√
n−1
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Putting all together we get:

1

n
√
n

n∑
i=1

1

1− (1− 1√
n

)i
≤ 1

n
√
n

2
√
n−2∑
k=1

2n

k
+

n− 2
√
n+ 2

1− (1− 1√
n

)2
√
n−1


≤ 1

n
√
n

2n

2
√
n−2∑
k=1

1

k
+

n

1− (1− 1√
n

)2
√
n−1


≤ 1

n
√
n

(
2n(1 + log(2

√
n)) +

n

1− (1− 1√
n

)2
√
n−1

)

≤ 1√
n

(
2 + 2 log(2

√
n) +

1

1− (1− 1√
n

)2
√
n−1

)

Asymptotically, the rate is
log(n)√

n
(with a learning rate γ ∼ 1√

n
). This must be compared with the

convex case in [13], where they get
log(n)

n
. Overall the mechanism is RDP with parameters

(
α,

4αL2

σ2
log(n)√

n

)

However we can show similarly that if γ ∼ 1

n
, then we recover

(
α,

4αL2

σ2
log(n)

n

)
RDP. Better upper

bounds can be obtained with Riemann sums.

A.6 Proof of Proposition 3.3

Proof.

Step 1: Build the distribution of ut+1|ut.
ηt+1|ut ∼ N (0, σ2Id) and θt+1|ηt+1, ut ∼ N ((Id − γαt)θt − γβt − ηt+1 + ηt, 0) (degenerate gaussian,

amounts to a dirac).

Now we use the formula (under the conditional probability put) that gives the joint probability from

conditionals:

ut+1|ut ∼ N (

 0

(Id − γαt)θt − γβt + ηt

 ,

 σ2Id −σ2Id
−σ2Id σ2Id

)

Step 2: Compute the distribution of ut+1.

Suppose ut ∼ N ((nt,mt)
T , Vt) (true for u0 = (0, θ0)), then ut+1 ∼ N ((nt+1,mt)

>, Vt+1). We know

that:

ut+1|ut ∼ N (Aut +B,

 σ2Id −σ2Id
−σ2Id σ2Id

)
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with A =

 0 0

Id Id − γαt

 and B =

 0

−γβt

.

Formulas give: nt+1

mt+1

 = A

nt

mt

+B =

 0

nt + (Id − γαt)mt − γβt


and we easily see that ∀t, nt = 0 so that:

mt+1 = (Id − γαt)mt − γβt

For the variances:

Vt+1 =

 σ2Id −σ2Id
−σ2Id σ2Id

+AVtA
>

Step 3: Keep only the marginal distribution of θt+1

The mean is already computed:

mt+1 = (Id − γαt)mt − γβt ; m0 = θ0

For the variance, we must work with block matrices. For all t, we write

Vt =

at bt

ct dt


where we are only interested in dt. The recursion between variances gives:

at+1 bt+1

ct+1 dt+1

 =

 σ2Id −σ2Id
−σ2Id σ2Id

+

 0 0

Id Id − γαt

at bt

ct dt

0 Id

0 (Id − γαt)>



at+1 bt+1

ct+1 dt+1

 =

 σ2Id −σ2Id
−σ2Id σ2Id

+

0 0

0 at + (Id − γαt)ct + (bt + (Id − γαt)dt)(Id − γαt)


For all t ≥ 1, at = σ2Id and bt = ct = −σ2Id. Hence we have a recursive formula for dt:

dt+1 = σ2Id + σ2Id − σ2(Id − γαt)− σ2(Id − γαt) + (Id − γαt)dt(Id − γαt)

dt+1 = 2γ2α2
tσ

2 + (Id − γαt)dt(Id − γαt)
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Taken the same notations as before, this amounts to:

Σt+1 = 2γ2σ2α2
t + (Id − γαt)Σt(Id − γαt) .

A.7 Proof of Lemma 4.1

Proof. If three datasetsX, X ′, X ′′ of size n are mutually adjacent, they must differ on the same data

point. Let it be the i-th, and the remaining n − 1 data points are the same. Let p, q, r denote the

distributionsM ◦ subsample(X),M ◦ subsample(X ′),M ◦ subsample(X ′′), respectively.
Let E be the event such that the subsample includes the ith item (and Ec be complement event).

We have p(E) = q(E) = wi (by assumption), we have:

p = wip(.|E) + (1− wi)p(.|Ec)

q = wiq(.|E) + (1− wi)q(.|Ec)

and by construction, p(.|Ec) = q(.|Ec).
Then p− q = wi(p(.|E)− q(.|E)). Hence:

D|χ|j (p, q||r) = Er

[( |p− q|
r

)j]

= Er

[( |wi(p(.|E)− q(.|E))|
r

)j]

= wjiEr

[( |p(.|E)− q(.|E)|
r

)j]

≤ cjEr
[( |p(.|E)− q(.|E)|

r

)j]
= cjD|χ|j (p(.|E), q(.|E)||r)

Let k be the random index chosen by the subsample operator. Its distribution is non uniform but we

still get:

r(θ) = Ek[r(θ|k)]

Now, define functions g and g′ on index k such that:

g(k) := p(θ|i)
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and

g′(k) := q(θ|i)

Check that p(θ|E) = Ek[g(k)] and q(θ|E) = Ek[g′(k)].

Then we can write:

Er
( |p(θ|E)− q(θ|E)|

r(θ)

)j
=

∫ |p(θ|E)− q(θ|E)|j
r(θ)j−1

dθ

≤
∫

Ek
[ |g(k)− g′(k)|j

r(θ|k)j−1

]
dθ

= EkEr

[( |g(k)− g′(k)|
r(θ|k)

)j
|k
]
≤ ζ(j)j .

Finally we get the result:

D|χ|j (p, q||r) = wjiD|χ|j (p(.|E), q(.|E)||r) ≤ (cζ(j))j .
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