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Introduction

e \We present a representation of non-negative smooth functions in
reproducing kernel Hilbert spaces (RKHS), extending the
sum-of-squares (SoS) representation of polynomials.

e We apply such representations to optimal control problems,
leading to a sample-based numerical method.
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Introduction

e \We present a representation of non-negative smooth functions in
reproducing kernel Hilbert spaces (RKHS), extending the
sum-of-squares (SoS) representation of polynomials.

e We apply such representations to optimal control problems,
leading to a sample-based numerical method.

The preprint is available on arxiv:
https://arxiv.org/abs/2110.07396
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Non-convex Optimization as a Linear Program

We are interested in finding the global minimum of a possibly
non-convex function:
f* = min f(x).
x€RP
This is equivalent to:

f*=sup c
ceR

s.t. Vx € RP, f(x) —c>0.
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Non-convex Optimization as a Linear Program

We are interested in finding the global minimum of a possibly

non-convex function:
f* = min f(x).
xERP

This is equivalent to:

f*=sup c
ceR

s.t. Vx e RP,[f(x) —c >0

How to handle a dense set of constraints?
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|dea 1: Subsampling Inequalities

f*=sup ¢
ceR

st. Vx e RP [f(x) —c>0

Relax it to:

f, =sup ¢
ceR

sit. Vie {1,...,n}, f(x;) —c >0,

which is equivalent to...
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|dea 1: Subsampling Inequalities

f*=sup ¢
ceR
st. Vx e RP [f(x) —c>0
Relax it to:
f, =sup ¢
ceR

sit. Vie {1,...,n}, f(x;) —c >0,

which is equivalent to... f* ~ f, = min; f(x;).

If f Lipschitz, we need O(¢~P) samples to approximate f* up to e.
If £ € C5(RP) is smooth, the lower-bound is O(s~?/%) [3].

Can we do any better?
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|dea 2: Representing Non-negative Functions

f*=sup ¢
ceR

st. Vx e RP,[f(x) —c >0

We need a practical representation of non-negative functions.

6 of 22



|dea 2: Representing Non-negative Functions

f*=sup ¢
ceR

st. Vx e RP [f(x) —c>0

We need a practical representation of non-negative functions.

Imagine we know how to represent some g, e.g., of the form:
8k(x) = (O, ¢(x))-

Then we can generate non-negative functions as sum-of-squares:

g(x) = &)’
k=1
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|dea 2: Representing Non-negative Functions

f*=sup ¢
ceR

st. Vx e RP [f(x) —c>0
We need a practical representation of non-negative functions.

Imagine we know how to represent some g, e.g., of the form:
8k(x) = (O, ¢(x))-

Then we can generate non-negative functions as sum-of-squares:
2 £ ([0, AC).

where A=3"1" 0,® Hk = 0 has rank less than m.



Polynomial Sum-of-Squares (SoS)

In dimension 1, all non-negative polynomials are SoS.
This is not true in larger dimensions.

Powerful theorems describe cases of tight SoS representations [1].
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Polynomial Sum-of-Squares (SoS)

In dimension 1, all non-negative polynomials are SoS.
This is not true in larger dimensions.

Powerful theorems describe cases of tight SoS representations [1].

Theorem (Putinar’s Positivstellensatz (simplified))

Let (hy)k a family of polynomials and W = {x | Vk, hy(x) > 0} a
semi-algebraic set. Assume that {x € R? | hi(x) > 0} is compact
for some k. If a polynomial f is strictly positive on W, then there
exists SoS polynomials (ok)o<k<m Such that:

m
f =00+ Zakhk.
k=1
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The Moment — SoS Hierarchy

Let f a polynomial of degree dy. We want to solve:

f*= min f 1 Vke{l,.. h > 0.
min (x) s.t. Vk e {1,...,m}, h(x)>0

Lasserre's Hierarchy of semi-definite programs (SDP):

Find ¢, X, = 0, k =0,..., m such that
VQENPO, fa_C1a:0:Z<C§7Xk>
k=0
Vo e NG \NE, 0= (Ck Xy).
k=0
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The Moment — SoS Hierarchy

Let f a polynomial of degree dy. We want to solve:

f*= min f 1 Vke{l,.. h > 0.
min (x) s.t. Vk e {1,...,m}, h(x)>0

Lasserre's Hierarchy of semi-definite programs (SDP):

Find ¢, X, = 0, k =0,..., m such that
m

Vo eNE, f,—clao =) (CK Xi)

k=0
[VaeN i

k=0

The monomials are indexed by N? := {a € NP : |a| < r} which has
size s,(d)=(P*"). This is exponential in the dimension p.
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SoS Functions in Reproducing Kernel Hilbert Spaces

A positive-definite kernel on RP is a function K : R? x R? — R such
that Vn > 1,V(xq, ..., X»), the matrix (K(x;,x;)) is PSD.

It is associated to a Hilbert space H such that:

e Vx € RP, p(x) :== K(x,-) € H;
o Vf € H,x € RP, (f,(x)) = f(x).
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SoS Functions in Reproducing Kernel Hilbert Spaces

A positive-definite kernel on RP is a function K : R? x R? — R such
that Vn > 1,V(xq, ..., X»), the matrix (K(x;,x;)) is PSD.

It is associated to a Hilbert space H such that:
o Vx € RP, p(x) := K(x,-) € H,
o Vf € H,x € RP, (f,(x)) = f(x).

Using the reproducing property, a sum-of-squares of functions in H:

Vx €RP, g(x) = hi(x)?
k=1

is such that
Vx e RY, g(x) = (p(x), Ap(x)),
where A € S (H) is a PSD operator, possibly infinite-dimensional.
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SoS Representation of Smooth Functions [4]

We consider as our RKHS # the Sobolev space W5 (IRP), with
s > p/2 + 3, of s-smooth functions.

Theorem (informal)

If f € H has a unique isolated global minimum at x* s.t. a =)

then there exists hy, ..., hpn, € H, with m < p + 1 such that:

x*

Vx, f(x)—f"= th(x)2

Hence f — f* is a SoS of (smooth) functions in H, and:

JA € Sy (H) s.t. Vx, f(x) =" = {p(x), Ap(x)).

No need for a hierarchy!
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Non-convex Optimization of Smooth Functions

f*=sup c
ceR

st. Vx e RP,[f(x) —c>0

Using the Theorem, if f is smooth, this is equivalent to:
= sup c
cER,AES, (H)
s.t. Vx, f(x) — ¢ = (p(x), Ap(x)).
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Non-convex Optimization of Smooth Functions

We can now subsample equalities:

fn= sup c— ATr(A)
ceR,AES (H)

st. Vie{1,..,n}, f(x;)—c = (p(x), Ap(x;)).

12 of 22



Non-convex Optimization of Smooth Functions

We can now subsample equalities:

fn= sup c— ATr(A)
ceR,AES (H)

St Vi€ {1, n}, F(x) = c = (p(), A(a)).
Using the reproducing property, this is equivalent to the SDP:

fo= sup ¢ — ATr(B)
cER,B>0

st.Vie{l,..,n}, f(x)—c=> Bd;,

where the ®; € R"” are vectors computed from the kernel matrix.

This achieves an almost optimal rate of O(n=(s=3)/P+1/2) for
s >3+ p/2. The lower-bound is O(n~*/P).
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In short... (see [3])

Subsampling
inequalities

Subsampling

\ equalities
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Optimal Control as a Linear Program

e The optimal control problem is to find V* such that:

i
V(i) = inf [ L(ex(0). u(©)dt + M(x(T)

YVt € [to, T], x(t) = f(t,x(t),u(t)), x(0)= xo.
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Optimal Control as a Linear Program

e The optimal control problem is to find V* such that:
T
V*(to, x0) = ir(n‘)/ L(t, x(8), u(£))dt + M(x(T))
u\- to
Yt € [to, T], x(t) = f(t,x(t), u(t)), x(0) = xo.

e Under convexity assumptions, this is equivalent to finding a
maximal subsolution of the Hamilton-Jacobi-Bellman equation [2]:

sup / V/(0, x0)dpo(x0)
Ve ([0, T]x X)

4
(e, ), S(tx) Lt x,u) + TV x) (2t x,0) > 0
Vx, V(T,x) < M(x).
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Optimal Control as a Linear Program

e The optimal control problem is to find V* such that:

i
V(i) = inf [ L(ex(0). u(©)dt + M(x(T)

YVt € [to, T], x(t) = f(t,x(t),u(t)), x(0)= xo.

e Under convexity assumptions, this is equivalent to finding a
maximal subsolution of the Hamilton-Jacobi-Bellman equation [2]:

sup / V/(0, x0)dpo(x0)
Ve ([0, T]x X)

v(t, x, u),[%—\t/(t,x) + L(t, x,u) + VV(t,x) f(t,x,u) > 0]

Vx, V(T,x) < M(x).
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A Simple Baseline: Subsampling Inequalities

Using a linear parameterization of V/, and simply subsampling
inequalities leads to an LP:

sup = Z V,(0, x(1)
i=1

germ N =

Viel, Hy(t" x" uy> o0,

This is already a non-trivial numerical method.

Can we do any better?
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SoS Representation of the Hamiltonian

Theorem (informal)

Assume that:

e f is control-affine:  f(t,x,u) = g(t,x) + B(t,x)u;

e | is strongly convex in u;

e [, B and V* are sufficiently smooth;

Then H* is a SoS of p smooth functions (wj)1<j<p € C*(Q):

p
V(t,x,u) € Q, H*(t,x,u)= Z w;(t, x, u)?.
=i

Limit: in general V* is not even C1. A possible workaround is to add
noise to the dynamics to smoothen V*.
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A Practical Algorithm for Smooth Optimal Control

e Adding regularization terms, we get the following SDP:

sup ¢ 6 — |03 — ATr(B) — ~||0]|> + clogdet B + C
B>=0,0,6

"

such that Vi€ {1,...,n}, bj+a; 0= (d;)"B®; + 4.

e The dual is solved with damped Newton's method, an algorithm
with cost O(n®) in time and O(n?) in space for each iteration.
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Numerical Example

We solve a linear quadratic regulator. We know that:
H*(t, x,u) = (u+ F(t)x)TR(u + F(t)x).
We use: K((t,x,u), (t',x', ) = (u, ) + (x,x')e 171,
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Numerical Example

We solve a linear quadratic regulator. We know that:
H*(t, x,u) = (u+ F(t)x) " R(u + F(t)x).
We use: K((t,x,u),(t',x",u)) = (u, ) + (x,x")e It

Cost of policy

— P

—— guided SoS
0.90 - kerpel .SoS
=== projection
0.85
e
0.80 — ===g
5 10 15 20

Nx, Ny
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Again...

Subsampling
inequalities

Subsampling

\ equalities
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Conclusion

e We have presented an extension of the SoS framework in RKHS.
e |t leads to sample-based numerical methods involving SDPs.

e There are many potential applications, e.g., to optimal
transport, sampling, modelling of probability distributions...
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