

Optimal Control as a Linear Program –

• We consider a **finite-horizon optimal control problem**, with compact state and action spaces $\mathcal{X} \subset \mathbb{R}^d$ and $\mathcal{U} \subset \mathbb{R}^p$:

$$V^*(t_0, x_0) = \inf_{u(\cdot)} \int_{t_0}^T L(t, x(t), u(t)) dt + M(x(T))$$

$$\forall t \in [t_0, T], \ \dot{x}(t) = f(t, x(t), u(t)), \quad x(0) = x_0.$$

Let μ_0 be a probability measure on \mathcal{X} . We are interested in the value of the stochastic initial point problem $\mathbb{E}_{x_0 \sim \mu_0} \left[V^*(0, x_0) \right]$.

• Under some convexity assumptions, this problem is equivalent to finding a **maximal subsolution** of the Hamilton-Jacobi-Bellman equation:

$$\begin{split} \sup_{\substack{V \in C^1([0,T] \times \mathcal{X})}} \int V(0,x_0) \mathsf{d}\mu_0(x_0) \\ \forall (t,x,u), \, \frac{\partial V}{\partial t}(t,x) + L(t,x,u) + \nabla V(t,x)^\top f(t,x,u) \ge 0 \\ \forall x, \, V(T,x) \le M(x). \end{split}$$
(

The **optimal value function** V^* is a solution of HJB, with equality in the 2nd constraint, and in the 1st one at the optimal controller $u^*(t, x)$. • V is searched in a **linearly parameterized** set of functions:

$$\mathbf{F} = \{(t, x) \mapsto V_{\theta}(t, x) = \theta^{\top} \psi(t, x) + M(x) \mid \theta \in \mathbb{R}\}$$

with $\psi(T, .) = 0$. If $V^* \in \mathcal{F}$ then (P) reduces to a linear program. **However**, this LP has a **dense set of constraints** of the form:

$$\forall (t, x, u), \quad H(t, x, u) \ge 0.$$

Baseline: Subsampling Inequalities —

A **simple relaxation** of problem (P) is to subsample a finite number of inequalities, and obtain an LP (penalized to avoid unbounded solutions):

$$\sup_{\theta \in \mathbb{R}^m} \frac{1}{n} \sum_{i=1}^n V_{\theta}(0, x^{(i)}) - \lambda_{\theta} \|\theta\|_2^2$$

$$\forall i \in I, \quad H_{\theta}(t^{(i)}, x^{(i)}, u^{(i)}) \ge 0.$$

An informative example

It is not straightforward to quantify the effect of this relaxation as a function of the number of subsampled inequalities. Yet a particular instance of the optimal control problem is the **global optimization** problem:

$$\sup c \text{ s.t. } \forall y \in \mathbb{R}^p, \ g(y) - c \ge 0.$$

Subsampling inequalities v.s. equalities

Subsampled inequalities lead to the approximation $\min g \simeq \min\{g(x_i)\}$. It requires $O(\varepsilon^{-p})$ samples to approximate $\min g$ with precision ε . If $g \in C^s(\mathbb{R}^p)$ is smooth, this rate can be improved to $O(\varepsilon^{-p/s})$ with a sum-of-squares representation and subsampled equalities.

Infinite-Dimensional Sums-of-Squares for Optimal Control

E. Berthier, J. Carpentier, A. Rudi and F. Bach – Inria, ENS, PSL Research University

(OCP)

 $\mathbb{R}^m\},$

(LP)

Sum-of-Squares Representations —

In the case of **polynomial** f, L and M, the state-of-the-art method is to strengthen the constraint $H \ge 0$ by $H(t, x, u) = \sum_{i} p_{j}(t, x, u)^{2}$, where the p_j are polynomials. This is a polynomial sum-of-squares (SoS), and leads to **Lasserre's hierarchy** of SDPs, converging to the value of (P).

Going beyond polynomials

We extend this to non-polynomial **smooth** problems, by representing non-negative functions as SoS in a reproducing kernel Hilbert space (RKHS) \mathcal{H} , e.g. a Sobolev space, with positive-definite kernel k, and possibly infinite-dimensional embedding $\Phi(y) = k(y, \cdot)$.

A SoS Hamiltonian

We consider a kernel k on $[0, T] \times \mathcal{X} \times \mathcal{U}$. We define the strengthening:

 $V(0,x_0)\mathsf{d}\mu_0(x_0)$ sup $V{\in}C^1([0,T]{ imes}\mathcal{X}),$. $\mathcal{A} \in \mathbb{S}_+(\mathcal{H})$ $\forall (t, x, u), \ H(t, x, u) = \langle \Phi(t, x, u), \mathcal{A}\Phi(t, x, u) \rangle.$

This problem gives a **lower-bound** on the value of (P). It coincides with (P) if there exists $\mathcal{A} \in \mathbb{S}_+(\mathcal{H})$ such that, at the optimal V^* :

 $\forall (t, x, u), \ H^*(t, x, u) = \langle \Phi(t, x, u), \mathcal{A}\Phi(t, x, u) \rangle.$

Exact SoS representations for certain smooth problems Theorem 1 (informal) Let $s \in \mathbb{N}$, $s \ge 1$. Assume that: • f is control-affine: $\forall (t, x, u) \in [0, T] \times \mathcal{X} \times \mathcal{U}$,

f(t, x, u) = g(t, x) + B(t, x)u;

• L is strongly convex: $\nabla_u^2 L(t, x, u) \succcurlyeq \rho I$ for some $\rho > 0$; • L and B and V^* are sufficiently smooth; Then H^* is a SoS of p smooth functions $(w_j)_{1 \le j \le p} \in C^s(\Omega)$:

$$\forall (t, x, u) \in \Omega, \quad H^*(t, x, u) = 2$$

Subsampling Equalities

We can then subsample the SoS equality constraints. Using generic properties of an RKHS, we obtain a **semi-definite program** of the form:

 $\sup \quad c^{\top}\theta - \lambda_{\theta} \|\theta\|_{2}^{2} - \lambda \mathsf{Tr}(B) + C$ $B \succcurlyeq 0, \theta \in \mathbb{R}^m$ such that $\forall i \in \{1, \ldots, n\}, \ b_i + a_i^\top \theta = (\Phi_i)^\top B \Phi_i.$

• The $\Phi_i \in \mathbb{R}^n$ are computed from the Cholesky decomposition of the kernel matrix, with entries $[K]_{ij} = k((t^{(i)}, x^{(i)}, u^{(i)}), (t^{(j)}, x^{(j)}, u^{(j)})).$ • The regularization parameter $\lambda > 0$ allows for subsampling to recover the non-subsampled program when $n \to \infty$, and $\lambda \to 0$ at the proper rate. In the limit $\lambda \to 0$, we recover the LP formulation.

(KSOS)

$$\sum_{i=1}^{p} w_j(t, x, u)^2.$$

(SDP)

Practical Algorithm ——

imperfect modeling of V^* in \mathcal{F} , γ is typically chosen large. solve the dual of the following problem:

 $B \succeq 0, \theta, \delta$

Numerical Example —

In particular, we know that:

- We compare **three methods**, with $n = n_t n_x n_u$ sampled points: • the LP with subsampled inequalities;
 - the SDP with fixed embedding Ψ instead of Φ ("guided SoS"); • the SDP formulation ("kernel SoS") with kernel:

The results are given in terms of accuracy of the approximation of the optimal value function and **cost** of the greedy policy obtained from V.

Reference

- [1] J.-B. Lasserre, D. Henrion, C. Prieur, and E. Trélat. Nonlinear optimal control via occupation measures and LMIrelaxations. SIAM J. on Control and Optim., 47(4):1643-1666, 2008.
- [2] U. Marteau-Ferey, F. Bach, and A. Rudi. Non-parametric models for non-negative functions. In Advances in Neural Information Processing Systems, 2020.
- [3] A. Rudi, U. Marteau-Ferey, and F. Bach. Finding global minima via kernel approximations. Technical Report 2012.11978, arXiv, 2020.
- [4] R. Vinter. Convex duality and nonlinear optimal control. SIAM J. on Control and Optim., 31(2):518-538, 1993.

• We add a slack variable $\delta \in \mathbb{R}^n$ to improve stability and account for • We also add a log barrier function on B, with small ε , that allows to

 $\sup_{B \to 0} c^{\top} \theta - \lambda_{\theta} \|\theta\|_{2}^{2} - \lambda \operatorname{Tr}(B) - \gamma \|\delta\|^{2} + \varepsilon \log \det B + C$

such that $\forall i \in \{1, \ldots, n\}, \ b_i + a_i^\top \theta = (\Phi_i)^\top B \Phi_i + \delta_i.$

• The dual is solved with **damped Newton**'s method, a parameter-free algorithm with cost $O(n^3)$ in time and $O(n^2)$ in space for each iteration.

We solve a linear quadratic regulator in dimensions d = 2, p = 1, for which the optimal value function and controller are known in closed-form.

 $H^{*}(t, x, u) = (u + K(t)x)^{\top}R(u + K(t)x).$

 $k((t, x, u), (t', x', u')) = \langle u, u' \rangle / 100 + \langle x, x' \rangle \times \exp(-|t - t'|).$

Download the paper

