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Optimal Control as a Linear Program

e We consider a finite-horizon optimal control problem, with com-
pact state and action spaces X C R? and U C R”:

Vo) = inf [ L(t,a(t),ult)dt + M (a(1)

Vt € [to, T, @(t) = f(t,z(t), u(t)), (0)= . (OCP)

Let 1y be a probability measure on X'. We are interested in the value of
the stochastic initial point problem E, ., [V*(0, z¢)]|.

e Under some convexity assumptions, this problem is equivalent to finding
a maximal subsolution of the Hamilton-Jacobi-Bellman equation:

sup / V (0, 20 )dpo(zo)
VeCl(]0,T|xX)
oV

V(t, x,u), E(t, x)+ L(t,z,u) + VV(t,z)' f(t,z,u) >0

Vo, V(T,x) < M(x). (P)

The optimal value function V™ is a solution of HIB, with equality in
the 2nd constraint, and in the 1st one at the optimal controller u*(%, x).
e |/ is searched in a linearly parameterized set of functions:

F=A{{t,z) — Vy(t,z)=0"¢(t,z) + M(z) | § € R™},

with ¢(T,.) = 0. If V* € F then (P) reduces to a linear program.
However, this LP has a dense set of constraints of the form:

V(t,x,u), H(t,x,u)>0.

Baseline: Subsampling Inequalities

A simple relaxation of problem (P) is to subsample a finite number of
inequalities, and obtain an LP (penalized to avoid unbounded solutions):

SUp —ZVQ (0, 29) — Ng|0)])?

gcrm T

Vil H9(<> @), <i>)zo. (LP)

An informative example

It is not straightforward to quantify the effect of this relaxation as a func-
tion of the number of subsampled inequalities. Yet a particular instance
of the optimal control problem is the global optimization problem:

supc s.t. Vy € R, g(y) —c > 0.

Subsampling inequalities v.s. equalities

Subsampled inequalities lead to the approximation min g ~ min{ g(z;)}.
It requires O(c™?) samples to approximate min g with precision . |If
g € C*(RP) is smooth, this rate can be improved to O(¢7?/*) with a
sum-of-squares representation and subsampled equalities.
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Sum-of-Squares Representations

In the case of polynomial f, L and M, the state-of-the-art method is to
strengthen the constraint H > 0 by H(t,x,u) =} p;(t, , w)?, where
the p; are polynomials. This is a polynomial sum-of-squares (So0S), and
leads to Lasserre’s hierarchy of SDPs, converging to the value of (P).

Going beyond polynomials

We extend this to non-polynomial smooth problems, by representing
non-negative functions as SoS in a reproducing kernel Hilbert space
(RKHS) H, e.g. a Sobolev space, with positive-definite kernel k£, and
possibly infinite-dimensional embedding ®(y) = k(y, -).

A SoS Hamiltonian
We consider a kernel k on |0, T'| x X xU. We define the strengthening;:

sup / V (0, 20 )dpo(zo)
VeCl([0,T]xX),
AES, (H)

V(t,z,u), H(t,z,u) = (P(t,x,u), AP(t, z,u)). (KSOS)

This problem gives a lower-bound on the value of (P). It coincides with
(P) if there exists A € S, () such that, at the optimal V'*:

V(t,z,u), H(t,z,u) = (P(t,z,u), AP(t, x,u)).

Exact SoS representations for certain smooth problems

Theorem 1 (informal) Let s € N, s > 1. Assume that:
e [ is control-affine: V(t,z,u) € [0,T] x X x U,

f(t,z,u) =g(t,z) + B(t, x)u;

e L is strongly convex: V*L(t,xz,u) 3= pl for some p > 0;
e [Land B and V'™ are sufficiently smooth;
Then H* is a SoS of p smooth functions (w,)1<;<, € C*(€)):

Zw]tmu

V(t,z,u) € Q, H(t,x,u)=

Subsampling Equalities

We can then subsample the SoS equality constraints. Using generic prop-
erties of an RKHS, we obtain a semi-definite program of the form:

sup ¢ 0 — M|l0]]5 — ATr(B) + C
B>=0,0cR™

such that Vi € {1,...,n}, b +a, 0 = (9;)' BD;. (SDP)

e The $; € R"” are computed from the Cholesky decomposition of the
kernel matrix, with entries [K|;; = k (¢, 29 u"), (¢V), 219 4l))).
e The regularization parameter A > ( aIIows for subsampling to re-
cover the non-subsampled program when n — oo, and A — 0 at the
proper rate. In the limit A — 0, we recover the LP formulation.

Practical Algorithm

e We add a slack variable 0 € R" to improve stability and account for
imperfect modeling of V* in JF, ~v is typically chosen large.

e We also add a log barrier function on B, with small £, that allows to
solve the dual of the following problem:

sup ¢ 0 — Ngl|0]|5 — ATr(B) — v||6||* + elogdet B + C
B>=0,0,0

such that Vi € {1,...,n}, b;+a; 0 = (®;) BO; + 4.

e [he dual is solved with damped Newton's method, a parameter-free
algorithm with cost O(n’) in time and O(n?) in space for each iteration.

Numerical Example

We solve a linear quadratic regulator in dimensions d = 2, p = 1, for
which the optimal value function and controller are known in closed-form.
In particular, we know that:

H*t,z,u) = (u+ K(t)z) R(u+ K(t)x).

We compare three methods, with n = n;n,n, sampled points:
e the LP with subsampled inequalities;

e the SDP with fixed embedding ¥ instead of ® (“guided SoS");
e the SDP formulation (“kernel SoS™) with kernel:

k((t, z,u), (', 2, u) = (u,u) /100 + {x,

') x exp(—|t — t)).

The results are given in terms of accuracy of the approximation of the
optimal value function and cost of the greedy policy obtained from V.
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