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• We consider a finite-horizon optimal control problem, with com-
pact state and action spaces X ⊂ Rd and U ⊂ Rp:

V ∗(t0, x0) = inf
u(·)

∫ T

t0

L(t, x(t), u(t))dt + M(x(T ))

∀t ∈ [t0, T ], ẋ(t) = f (t, x(t), u(t)), x(0) = x0. (OCP)

Let µ0 be a probability measure on X . We are interested in the value of
the stochastic initial point problem Ex0∼µ0

[V ∗(0, x0)] .
• Under some convexity assumptions, this problem is equivalent to finding
a maximal subsolution of the Hamilton-Jacobi-Bellman equation:

sup
V ∈C1([0,T ]×X )

∫
V (0, x0)dµ0(x0)

∀(t, x, u),
∂V

∂t
(t, x) + L(t, x, u) +∇V (t, x)>f (t, x, u) ≥ 0

∀x, V (T, x) ≤M(x). (P)

The optimal value function V ∗ is a solution of HJB, with equality in
the 2nd constraint, and in the 1st one at the optimal controller u∗(t, x).
• V is searched in a linearly parameterized set of functions:

F = {(t, x) 7→ Vθ(t, x) = θ>ψ(t, x) + M(x) | θ ∈ Rm},

with ψ(T, .) = 0. If V ∗ ∈ F then (P) reduces to a linear program.
However, this LP has a dense set of constraints of the form:

∀(t, x, u), H(t, x, u) ≥ 0.

Optimal Control as a Linear Program

A simple relaxation of problem (P) is to subsample a finite number of
inequalities, and obtain an LP (penalized to avoid unbounded solutions):

sup
θ∈Rm

1

n

n∑
i=1

Vθ(0, x
(i))− λθ‖θ‖2

2

∀i ∈ I, Hθ(t
(i), x(i), u(i)) ≥ 0. (LP)

An informative example
It is not straightforward to quantify the effect of this relaxation as a func-
tion of the number of subsampled inequalities. Yet a particular instance
of the optimal control problem is the global optimization problem:

sup c s.t. ∀y ∈ Rp, g(y)− c ≥ 0.

Subsampling inequalities v.s. equalities
Subsampled inequalities lead to the approximation min g ' min{g(xi)}.
It requires O(ε−p) samples to approximate min g with precision ε. If
g ∈ Cs(Rp) is smooth, this rate can be improved to O(ε−p/s) with a
sum-of-squares representation and subsampled equalities.

Baseline: Subsampling Inequalities

In the case of polynomial f , L and M , the state-of-the-art method is to
strengthen the constraint H ≥ 0 by H(t, x, u) =

∑
j pj(t, x, u)2, where

the pj are polynomials. This is a polynomial sum-of-squares (SoS), and
leads to Lasserre’s hierarchy of SDPs, converging to the value of (P).
Going beyond polynomials
We extend this to non-polynomial smooth problems, by representing
non-negative functions as SoS in a reproducing kernel Hilbert space
(RKHS) H, e.g. a Sobolev space, with positive-definite kernel k, and
possibly infinite-dimensional embedding Φ(y) = k(y, ·).
A SoS Hamiltonian
We consider a kernel k on [0, T ]×X×U . We define the strengthening:

sup
V ∈C1([0,T ]×X ),
A∈S+(H)

∫
V (0, x0)dµ0(x0)

∀(t, x, u), H(t, x, u) = 〈Φ(t, x, u),AΦ(t, x, u)〉. (KSOS)

This problem gives a lower-bound on the value of (P). It coincides with
(P) if there exists A ∈ S+(H) such that, at the optimal V ∗:

∀(t, x, u), H∗(t, x, u) = 〈Φ(t, x, u),AΦ(t, x, u)〉.

Exact SoS representations for certain smooth problems
Theorem 1 (informal) Let s ∈ N, s ≥ 1. Assume that:
• f is control-affine: ∀(t, x, u) ∈ [0, T ]×X × U ,

f (t, x, u) = g(t, x) + B(t, x)u;

• L is strongly convex: ∇2
uL(t, x, u) < ρI for some ρ > 0;

• L and B and V ∗ are sufficiently smooth;
Then H∗ is a SoS of p smooth functions (wj)1≤j≤p ∈ Cs(Ω):

∀(t, x, u) ∈ Ω, H∗(t, x, u) =

p∑
j=1

wj(t, x, u)2.

Sum-of-Squares Representations

We can then subsample the SoS equality constraints. Using generic prop-
erties of an RKHS, we obtain a semi-definite program of the form:

sup
B<0,θ∈Rm

c>θ − λθ‖θ‖2
2 − λTr(B) + C

such that ∀i ∈ {1, . . . , n}, bi + a>i θ = (Φi)
>BΦi. (SDP)

• The Φi ∈ Rn are computed from the Cholesky decomposition of the
kernel matrix, with entries [K]ij = k

(
(t(i), x(i), u(i)), (t(j), x(j), u(j))

)
.

• The regularization parameter λ > 0 allows for subsampling to re-
cover the non-subsampled program when n → ∞, and λ → 0 at the
proper rate. In the limit λ→ 0, we recover the LP formulation.

Subsampling Equalities

• We add a slack variable δ ∈ Rn to improve stability and account for
imperfect modeling of V ∗ in F , γ is typically chosen large.
• We also add a log barrier function on B, with small ε, that allows to
solve the dual of the following problem:

sup
B<0,θ,δ

c>θ − λθ‖θ‖2
2 − λTr(B)− γ‖δ‖2 + ε log detB + C

such that ∀i ∈ {1, . . . , n}, bi + a>i θ = (Φi)
>BΦi + δi.

• The dual is solved with damped Newton’s method, a parameter-free
algorithm with cost O(n3) in time and O(n2) in space for each iteration.

Practical Algorithm

We solve a linear quadratic regulator in dimensions d = 2, p = 1, for
which the optimal value function and controller are known in closed-form.
In particular, we know that:

H∗(t, x, u) = (u + K(t)x)>R(u + K(t)x).

We compare three methods, with n = ntnxnu sampled points:
• the LP with subsampled inequalities;
• the SDP with fixed embedding Ψ instead of Φ (“guided SoS”);
• the SDP formulation (“kernel SoS”) with kernel:

k((t, x, u), (t′, x′, u′)) = 〈u, u′〉/100 + 〈x, x′〉 × exp(−|t− t′|).

The results are given in terms of accuracy of the approximation of the
optimal value function and cost of the greedy policy obtained from V .
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Numerical Example
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